【題目】如圖,射線OA的方向是北偏東15°,射線OB的方向是北偏西40°,∠AOB=∠AOC,射線ODOB的反向延長線.

1)射線OC的方向是   

2)若射線OE平分∠COD,求∠AOE的度數(shù).

【答案】(1) 北偏東70°;(2) ∠AOE90°

【解析】

1)先求出,再求得的度數(shù),即可確定的方向;

2)根據(jù),,得出,進而求出的度數(shù),根據(jù)射線平分,即可求出再利用求出答案即可.

解:(1)∵OB的方向是北偏西40°OA的方向是北偏東15°,

∴∠NOB40°,∠NOA15°,

∴∠AOB=∠NOB+NOA55°,

∵∠AOB=∠AOC,

∴∠AOC55°

∴∠NOC=∠NOA+AOC70°,

OC的方向是北偏東70°;

故答案為:北偏東70°

2)∵∠AOB55°,∠AOC=∠AOB,

∴∠BOC110°

又∵射線ODOB的反向延長線,

∴∠BOD180°

∴∠COD180°110°70°

∵∠COD70°,OE平分∠COD,

∴∠COE35°

∵∠AOC55°

∴∠AOE90°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABCD,點M、N分別是AB、CD上兩點,點GABCD之間,連接MG、NG

1)如圖1,若GMGN,求∠AMG+∠CNG的度數(shù);

2)如圖2,若點PCD下方一點,MG平分∠BMPND平分∠GNP,已知∠BMG30°,求∠MGN+∠MPN的度數(shù);

3)如圖3,若點EAB上方一點,連接EM、EN,且GM的延長線MF平分∠AME,NE平分∠CNG2MEN+∠MGN105°,求∠AME的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1、圖2、是兩張形狀、大小完全相同的方格紙,方格紙中的每個小正方形的邊長都是1,每個小格的頂點叫做格點.請在圖1、圖2、中分別畫出符合要求的圖形.要求:所畫圖形各頂點必須與方格紙中的格點重合.

1)在圖1中畫一周長為的等腰直角三角形;

2)在圖2中畫一個面積為10,腰為5的等腰三角形;

3)直接寫出(2)中所畫等腰三角形的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,等腰中,,中點,連接,

1)求證:是等邊三角形

2)如圖2,在內(nèi)有一點,連接、,若,求的度數(shù)

3)如圖3,在(2)的條件下,在外有一點,連接、、若,,,求線段的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面的證明.(在括號中注明理由)

已知:如圖,BECD,∠A=∠1

求證:∠C=∠E

證明:∵BECD,(已知)

∴∠2=∠C,(   

又∵∠A=∠1,(已知)

AC   ,(   

∴∠2   ,(   

∴∠C=∠E(等量代換)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式(組),并把解集在數(shù)軸上表示出來.

1

2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市舉行店慶活動,對甲、乙兩種商品實行打折銷售,打折前,購買2件甲商品和3件乙商品需要180元;購買1件甲商品和4件乙商品需要200元,而店慶期間,購買10件甲商品和10件乙商品僅需520元,這比打折前少花多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在△ABC中,∠ABC與∠ACB的平分線相交于點P

(1)如果∠A=80°,求∠BPC的度數(shù);

(2)如圖②,作△ABC外角∠MBC,∠NCB的角平分線交于點Q,試探索∠Q∠A之間的數(shù)量關(guān)系.

(3)如圖③,延長線段BP、QC交于點E,△BQE中,存在一個內(nèi)角等于另一個內(nèi)角的2倍,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點在數(shù)軸上對應(yīng)的數(shù)為,點對應(yīng)的數(shù)為,且,滿足.

1)求點與點在數(shù)軸上對應(yīng)的數(shù)

2)現(xiàn)動點從點出發(fā),沿數(shù)軸向右以每秒個單位長度的速度運動;同時,動點從點出發(fā),沿數(shù)軸向左以每秒個單位長度的速度運動,設(shè)點的運動時間為.

若點和點相遇于點, 求點在數(shù)軸上表示的數(shù);

當(dāng)點和點相距個單位長度時,直接寫出的值.

查看答案和解析>>

同步練習(xí)冊答案