【題目】ABC ,已知點 D,E,F(xiàn) 分別是 BC,AD,CE 邊上的中點, SABC=4cm2 SBEF 的值為(

A. 2cm2 B. 1cm2 C. 0.5cm2 D. 0.25cm2

【答案】B

【解析】根據(jù)三角形的中線把三角形分成兩個面積相等的三角形求出SBCE=SABC,SBEF=SBCE,然后代入數(shù)據(jù)進行計算即可得解.

∵點D、 E分別是邊BC、AD上的中點,

SABD=SABC,SACD=SABC,

SBDE=SABD,SCDE=SACD,

SBCE=SBDE+SCDE=SABD+SACD=SABC,

∵點F是邊CE的中點,

SBEF=SBCE=×SABC=SABC,

SABC=4,

SBFF=×4=1.

故選:B.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將二次函數(shù)y=31x2-999x+892的圖形畫在坐標平面上,判斷方程31x2-999x+892=0的兩根,下列敘述何者正確( 。

A.兩根相異,且均為正根
B.兩根相異,且只有一個正根
C.兩根相同,且為正根
D.兩根相同,且為負根

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知正比例函數(shù)ykx的圖象經(jīng)過點P(1,2),如圖所示

(1)求這個正比例函數(shù)的解析式;

(2)將這個正比例函數(shù)的圖象向右平移4個單位長度,求出平移后的直線的解析式

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我縣各中小學校積極組織學生開展課外閱讀活動,為了解某校學生每周課外閱讀的時間量t(單位小時),采用隨機抽樣的方法抽取部分學生進行了問卷調(diào)查,調(diào)查結(jié)果按0t〈2,2t〈3,3t〈4,t4分為四個等級,并分別用A、B、C、D表示.根據(jù)調(diào)查結(jié)果統(tǒng)計數(shù)據(jù)繪制成如圖所示的兩幅不完整的統(tǒng)計圖由圖中給出的信息解答下列問題

(1)求這次抽查的學生總數(shù)是多少人,并求出x的值;

(2)將不完整的條形統(tǒng)計圖補充完整;

(3)若該校共有學生3600,試估計每周課外閱讀時間量滿足2t〈4的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】以直線AB上一點O為端點作射線OC,將一塊直角三角板的直角頂點放在O(:∠DOE=90°).

(1)如圖①,若直角三角板DOE的一邊OD放在射線OB,∠BOC=60°,∠COE的度數(shù);

(2)如圖②,將三板DOEO逆時針轉(zhuǎn)動到某個位置時,若恰好滿足5∠COD=∠AOE,∠BOC=60°,∠BOD的度數(shù)

(3)如圖③,將直角三角板DOE繞點O逆時針方向轉(zhuǎn)動到某個位置,OE恰好平分∠AOC,請說明OD所在射線是∠BOC的平分線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某批發(fā)門市銷售兩種商品,甲種商品每件售價為300元,乙種商品每件售價為80元.新年來臨之際,該門市為促銷制定了兩種優(yōu)惠方案:

方案一:買一件甲種商品就贈送一件乙種商品;

方案二:按購買金額打八折付款.

某公司為獎勵員工,購買了甲種商品20件,乙種商品x(x≥20)件.

(1)分別寫出優(yōu)惠方案一購買費用y1(元)、優(yōu)惠方案二購買費用y2元)與所買乙種商品x(件)之間的函數(shù)關(guān)系式;

(2)若該公司共需要甲種商品20件,乙種商品40件.設(shè)按照方案一的優(yōu)惠辦法購買了m件甲種商品,其余按方案二的優(yōu)惠辦法購買.請你寫出總費用wm之間的關(guān)系式;利用wm之間的關(guān)系式說明怎樣購買最實惠.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,BD、BE分別是高和角平分線,點F在CA的延長線上,F(xiàn)H⊥BE,交BD于點G,交BC于點H;下列結(jié)論:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=∠BAC-∠C;④∠BGH=∠ABE+∠C,其中正確的結(jié)論有___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,ABCD,點 E 為射線 FG 上一點.

(1)如圖 1,若EAF=30°,EDG=40°,則AED= °;

(2)如圖 2,當點 E FG 延長線上時,此時 CD AE 交于點 H,則∠AED、EAF、EDG之間滿足怎樣的關(guān)系,請說明你的結(jié)論;

(3)如圖 3,DI 平分∠EDC,交 AE 于點 K,交 AI 于點 I,且∠EAI:BAI=1:2,AED=22°,I=20°,求EKD 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了改善住房條件,小亮的父母考察了某小區(qū)的兩套樓房,套樓房在層樓,套樓房在層樓,套樓房的面積比套樓房的面積大24平方米,兩套樓房的房價相同,第3層樓和5層樓的房價分別是平均價的1.1倍和0.9倍.為了計算兩套樓房的面積,小亮設(shè)套樓房的面積為平方米,套樓房的面積為平方米,根據(jù)以上信息列出了下列方程組.其中正確的是( ).

A B

C D

查看答案和解析>>

同步練習冊答案