【題目】如圖,在四邊形ABCD中,AB∥CD,且AB=2CD,E,F(xiàn)分別是AB,BC的中點(diǎn),EF與BD交于點(diǎn)H.
(1)求證:△EDH∽△FBH;
(2)若BD=6,求DH的長.
【答案】
(1)證明:∵在四邊形ABCD中,AB∥CD,且AB=2CD,E,是AB的中點(diǎn),
∴DC= AB=EB,DC∥BE,
∴四邊形DCBE是平行四邊形,
∴FB∥DE,
∴△EDH∽△FBH
(2)解:由(1)知,BC∥DE,BC=DE,
∵FB= BC,
∴FB= DE.
∵△EDH∽△FBH,
∴ =2.
∵DH+HB=6,
∴DH=4
【解析】(1)先根據(jù)題意得出四邊形DCBE是平行四邊形,再由平行四邊形的性質(zhì)得出FB∥DE,故可得出∠FBH=∠EDH,∠DEH=∠BFH,進(jìn)而可得出結(jié)論;(2)先有平行四邊形的性質(zhì)得出BC∥DE,BC=DE,再由△EDH∽△FBH可得出結(jié)論.
【考點(diǎn)精析】掌握三角形中位線定理和相似三角形的判定與性質(zhì)是解答本題的根本,需要知道連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半;相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校260名學(xué)生參加植樹活動,要求每人植4﹣7棵,活動結(jié)束后隨機(jī)抽查了20名學(xué)生每人的植樹量,并分為四種類型,A:4棵;B:5棵;C:6棵;D:7棵,將各類的人數(shù)繪制成扇形圖(如圖(1))和條形圖(如圖(2)),經(jīng)確認(rèn)扇形圖是正確的,而條形圖尚有一處錯誤. 回答下列問題:
(1)寫出條形圖中存在的錯誤,并說明理由;
(2)寫出這20名學(xué)生每人植樹量的眾數(shù)、中位數(shù);
(3)在求這20名學(xué)生每人植樹量的平均數(shù)時,小宇是這樣分析的: 第一步:求平均數(shù)的公式是 = ;
第二步:在該問題中,n=4,x1=4,x2=5,x3=6,x4=7;
第三步: = =5.5(份)
①小宇的分析是從哪一步開始出現(xiàn)錯誤的?
②請你幫他計算出正確的平均數(shù),并估計這260名學(xué)生共植樹多少棵.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AE是弦,直線CG與⊙O相切于點(diǎn)C,CG∥AE,CG與BA的延長線交于點(diǎn)G,過點(diǎn)C作CD⊥AB于點(diǎn)D,交AE于點(diǎn)F.
(1)求證: ;
(2)若∠EAB=30°,CF=a,寫出求四邊形GAFC周長的思路.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個橫斷面為拋物線形狀的拱橋,當(dāng)水面寬4米時,拱頂(拱橋洞的最高點(diǎn))離水面2米,水面下降1米時,水面的寬度為米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)O在對角線AC上,以O(shè)A的長為半徑的圓O與AD,AC分別交于點(diǎn)E,F(xiàn),且∠ACB=∠DCE.
(1)判斷直線CE與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若tan∠ACB= ,BC=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC與△ADE中,ABED=AEBC,要使△ABC與△ADE相似,還需要添加一個條件,這個條件是(只加一個即可)并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AD=3,CD=4,點(diǎn)E在邊CD上,且DE=1.
(1)感知:如圖①,連接AE,過點(diǎn)E作EF⊥AE,交BC于點(diǎn)F,連接AF,易證:△ADE≌△ECF(不需要證明);
(2)探究:如圖②,點(diǎn)P在矩形ABCD的邊AD上(點(diǎn)P不與點(diǎn)A、D重合),連接PE,過點(diǎn)E作EF⊥PE,交BC于點(diǎn)F,連接PF.求證:△PDE∽△ECF;
(3)應(yīng)用:如圖③,若EF交AB邊于點(diǎn)F,其他條件不變,且△PEF的面積是3,則AP的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】父親節(jié)快到了,明明準(zhǔn)備為爸爸煮四個大湯圓作早點(diǎn):一個芝麻餡,一個水果餡,兩個花生餡,四個湯圓除內(nèi)部餡料不同外,其它一切均相同.
(1)求爸爸吃前兩個湯圓剛好都是花生餡的概率;
(2)若給爸爸再增加一個花生餡的湯圓,則爸爸吃前兩個湯圓都是花生餡的可能性是否會增大?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com