圖(1)是一個面積為1的黑色正三角形,順次連接它的三邊的中點,得到如圖(2)所示的第2個圖形(它的中間為一個白色的正三角形);在圖(2)的每個黑色的正三角形中分別重復上述的作法,得到如圖(3)所示的第3個圖形.如此繼續(xù)作下去,則在得到的第5個圖形中,所有黑色三角形的面積和是   
【答案】分析:首先將所給的圖②與圖③中的黑色三角形的面積和求出來,注意利用相似三角形的面積比等于相似比的平方.然后得到規(guī)律:第n個圖形中所有黑色三角形的面積和是:(n-1,代入即可求得.
解答:
解:∵D、E、F分別是AB、BC、CA的中點,
,
∴△DEF∽△ABC,
=(2=(2,
∴S△DEF=
∴圖②中所有黑色三角形的面積和是:1-=,
同理:圖三中各黑色三角形的面積和為:1-×3-==(2,
∴可得第n個圖形中所有黑色三角形的面積和是:(n-1
∴在得到的第5個圖形中,所有黑色三角形的面積和是:(4
故答案為:(4
點評:此題考查了相似三角形的面積比等于相似比的平方.此題還考查了學生的分歸納能力.解題時要注意仔細分析.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

圖(1)是一個面積為1的黑色正三角形,順次連接它的三邊的中點,得到如圖(2)所示的第2個圖形(它的中間為一個白色的正三角形);在圖(2)的每個黑色的正三角形中分別重復上述的作法,得到如圖(3)所示的第3個圖形.如此繼續(xù)作下去,則在得到的第5個圖形中,所有黑色三角形的面積和是
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

圖(1)是一個面積為1的正方形,經(jīng)過第一次“生長”后,在它的左右肩上生出兩個小正方形,其中三個正方形圍成的三角形是直角三角形,如圖(2);經(jīng)過第2次“生長”后變成圖(3),經(jīng)過第3次“生長”后變成圖(4),如果繼續(xù)“生長”下去,它將變得更加“枝繁葉茂”,這就是美麗的“勾股樹”.已知“生長”后形成的圖形中所有正方形的面積和存在一定的變化規(guī)律,請你利用這一規(guī)律求:①經(jīng)過第一次“生長”后的所有正方形的面積和為
2
2
,②經(jīng)過第10次“生長”后,圖中所有正方形的面積和為:
11
11

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

圖(1)是一個面積為1的正方形,經(jīng)過第一次“生長”后,在它的左右肩上生出兩個小正方形,其中三個正方形圍成的三角形是直角三角形,如圖(2),經(jīng)過第2次“生長”后變成圖(3),經(jīng)過第3次“生長”后變成圖(4),如果繼續(xù)“生長”下去,它將變得更加“枝繁葉茂”,這就是美麗的“勾股樹”.已知“生長”后形成的圖形中所有正方形的面積和存在一定的變化規(guī)律,請你利用這一規(guī)律求經(jīng)過第10次“生長”后的圖中所有正方形的面積和為:
11
11

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

圖(1)是一個面積為1的正方形,經(jīng)過第一次“生長”后,在它的左右肩上生出兩個小正方形,其中三個正方形圍成的三角形是直角三角形,如圖(2),經(jīng)過第2次“生長”后變成圖(3),經(jīng)過第3次“生長”后變成圖(4),如果繼續(xù)“生長”下去,它將變得更加“枝繁葉茂”,這就是美麗的“勾股樹”.已知“生長”后形成的圖形中所有正方形的面積和存在一定的變化規(guī)律,請你利用這一規(guī)律求經(jīng)過第10次“生長”后的圖中所有正方形的面積和為:______.

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年華師大版九年級(上)期中數(shù)學試卷(解析版) 題型:填空題

圖(1)是一個面積為1的黑色正三角形,順次連接它的三邊的中點,得到如圖(2)所示的第2個圖形(它的中間為一個白色的正三角形);在圖(2)的每個黑色的正三角形中分別重復上述的作法,得到如圖(3)所示的第3個圖形.如此繼續(xù)作下去,則在得到的第5個圖形中,所有黑色三角形的面積和是   

查看答案和解析>>

同步練習冊答案