【題目】如圖,在平面直角坐標(biāo)系中,AB∥CD∥x軸,BC∥DE∥y軸,且AB=CD=4 cm,OA=5 cm,DE=2 cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒1 cm的速度,沿ABC路線(xiàn)向點(diǎn)C運(yùn)動(dòng);動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),以每秒2 cm的速度,沿OED路線(xiàn)向點(diǎn)D運(yùn)動(dòng).若P,Q兩點(diǎn)同時(shí)出發(fā),其中一點(diǎn)到達(dá)終點(diǎn)時(shí),運(yùn)動(dòng)停止.
(1)直接寫(xiě)出B,C,D三個(gè)點(diǎn)的坐標(biāo);
(2)當(dāng)P,Q兩點(diǎn)出發(fā)3 s時(shí),求三角形PQC的面積;
(3)設(shè)兩點(diǎn)運(yùn)動(dòng)的時(shí)間為t s,用含t的式子表示運(yùn)動(dòng)過(guò)程中三角形OPQ的面積.
【答案】(1)B(4,5),C(4,2),D(8,2);(2)2;(3) .
【解析】
(1)根據(jù)平面直角坐標(biāo)系寫(xiě)出各點(diǎn)的坐標(biāo)即可;
(2)先求出點(diǎn)P、Q的坐標(biāo),再求出CP、CQ,然后根據(jù)三角形的面積公式列式計(jì)算即可得解;
(3)由題意點(diǎn)P從A運(yùn)動(dòng)到C用時(shí)需要7秒,點(diǎn)Q從O運(yùn)動(dòng)到D用時(shí)需要5秒,根據(jù)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),運(yùn)動(dòng)停止,可知運(yùn)動(dòng)時(shí)間t的取值范圍為0≤t≤5,然后分兩種情況討論即可.兩種情況分別為①0≤t<4,此時(shí)點(diǎn)P在AB上,點(diǎn)Q在OE上;②4≤t≤5,此時(shí)點(diǎn)P在BC上,點(diǎn)Q在DE上.
(1)∵AB∥CD∥x軸,BC∥DE∥y軸,且AB=CD=4,OA=5,DE=2,
4+4=8,
∴B(4,5),C(4,2),D(8,2);
(2)當(dāng)P,Q兩點(diǎn)運(yùn)動(dòng)3 s時(shí),如圖1,此時(shí)點(diǎn)P(3,5),Q(6,0),
因?yàn)镃(4,2),過(guò)點(diǎn)P作PM⊥x軸,延長(zhǎng)BC交x軸于點(diǎn)N,延長(zhǎng)DC交PM于點(diǎn)K,
則有M(3,0),N(4,0),K(3,2),
所以QM=MQ=3,CK=MN=1,PK=BC=3,CN=NQ=2,
所以三角形PQC的面積=×3×5-×1×3-×2×2-2×1=2;
(3)點(diǎn)P運(yùn)動(dòng)的路徑長(zhǎng)為AB+BC=4+3=7,用時(shí)需要7秒,
點(diǎn)Q運(yùn)動(dòng)的路徑長(zhǎng)為OE+DE=8+2=10,用時(shí)需要5秒,
根據(jù)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),運(yùn)動(dòng)停止,可知運(yùn)動(dòng)時(shí)間t的取值范圍為0≤t≤5;
①當(dāng)0≤t<4時(shí)(如圖2),OA=5,OQ=2t,
S三角形OPQ=OQOA=×2t×5=5t;
②當(dāng)4≤t≤5時(shí)(如圖3),OE=8,EM=9-t,PM=4,MQ=17-3t,EQ=2t-8,
S三角形OPQ=S梯形OPME-S三角形PMQ-S三角形OEQ
=×(4+8)×(9-t)-×4×(17-3t)-×8×(2t-8)
=52-8t,
綜上,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某小區(qū)將原來(lái)400平方米的正方形場(chǎng)地改建成300平方米的長(zhǎng)方形場(chǎng)地,且長(zhǎng)和寬之比為3∶2.如果把原來(lái)正方形場(chǎng)地的鐵柵欄圍墻利用起來(lái)圍成新場(chǎng)地的長(zhǎng)方形圍墻,那么這些鐵柵欄是否夠用?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某檢修小組乘一輛檢修車(chē)沿一段東西方向鐵路檢修,規(guī)定向東走為正,向西走為負(fù),小組的出發(fā)地記為M,某天檢修完畢時(shí),行走記錄(單位:千米)如下:
+12,-5,-9,+10,-4,+15,-9,+3,-6,-3,-7
(1)問(wèn)收工時(shí),檢修小組距出發(fā)地M有多遠(yuǎn)?在東側(cè)還是西側(cè)?
(2)若檢修車(chē)每千米耗油0.2升,求從出發(fā)到收工時(shí)檢修車(chē)共耗油多少升?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為BC的中點(diǎn),直角∠MDN繞點(diǎn)D旋轉(zhuǎn),DM,DN分別與邊AB,AC交于E,F兩點(diǎn),下列結(jié)論:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF,其中正確結(jié)論是( )
A. ①②④ B. ②③④
C. ①②③ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在同一條道路上,甲車(chē)從A地到B地,乙車(chē)從B地到A地,乙先出發(fā),圖中的折線(xiàn)段表示甲、乙兩車(chē)之間的距離y(千米)與行駛時(shí)間x(小時(shí))的函數(shù)關(guān)系的圖象.下列說(shuō)法錯(cuò)誤的是( )
A.乙先出發(fā)的時(shí)間為0.5小時(shí)
B.甲的速度是80千米/小時(shí)
C.甲出發(fā)0.5小時(shí)后兩車(chē)相遇
D.甲到B地比乙到A地早 小時(shí)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A(2,3)和點(diǎn)B(0,2),點(diǎn)A在反比例函數(shù)y= 的圖象上.作射線(xiàn)AB,再將射線(xiàn)AB繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)45°,交反比例函數(shù)圖象于點(diǎn)C,則點(diǎn)C的坐標(biāo)為.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是2018年12月份的日歷,我們選擇其中的方框部分,將每個(gè)方框部分中4個(gè)位置上的數(shù)交叉求平方和,再相減,例如:(32+112)-(42+102)=14,(212+292)-(222+282)=14,不難發(fā)現(xiàn)結(jié)果都是14.
(1)今天是12月12日,請(qǐng)你寫(xiě)一個(gè)含今天日期在內(nèi)的類(lèi)似部分的算式;
(2)請(qǐng)你利用整式的運(yùn)算對(duì)以上規(guī)律加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,點(diǎn)D為射線(xiàn)CB上一個(gè)動(dòng)點(diǎn)(不與B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,過(guò)點(diǎn)E作EF∥BC,交直線(xiàn)AC于點(diǎn)F,連接CE.
(1)如圖①,若∠BAC=60°,按邊分類(lèi):△CEF是 ____________ 三角形;
(2)若∠BAC<60°.
①如圖②,當(dāng)點(diǎn)D在線(xiàn)段CB上移動(dòng)時(shí),判斷△CEF的形狀并證明;
②當(dāng)點(diǎn)D在線(xiàn)段CB的延長(zhǎng)線(xiàn)上移動(dòng)時(shí),△CEF是什么三角形?請(qǐng)?jiān)趫D③中畫(huà)出相應(yīng)的圖形,寫(xiě)出結(jié)論并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)l1:y=kx﹣4的圖象與直線(xiàn)l2:y=x+1的圖象平行.
(1)求直線(xiàn)l1的圖象與x軸,y軸所圍成圖形的面積;
(2)求原點(diǎn)到直線(xiàn)l1的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com