【題目】如圖,設(shè)△ABC的兩邊AC與BC之和為a,M是AB的中點(diǎn),MC=MA=5,則a的取值范圍是_____.
【答案】10<a≤10.
【解析】
根據(jù)題設(shè)知三角形ABC是直角三角形,由勾股定理求得AB的長度及由三角形的三邊關(guān)系求得a的取值范圍;然后根據(jù)題意列出二元二次方程組,通過方程組求得xy的值,再把該值依據(jù)根與系數(shù)的關(guān)系置于一元二次方程z2-az+=0中,最后由根的判別式求得a的取值范圍.
∵M是AB的中點(diǎn),MC=MA=5,
∴△ABC為直角三角形,AB=10;
∴a=AC+BC>AB=10;
令AC=x、BC=y.
∴,
∴xy=,
∴x、y是一元二次方程z2-az+=0的兩個實(shí)根,
∴△=a2-4×≥0,即a≤10.綜上所述,a的取值范圍是10<a≤10.
故答案為:10<a≤10.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個多邊形的所有內(nèi)角與它的一個外角之和是2018°,求這個外角的度數(shù)和它的邊數(shù).
【答案】38° ; 邊數(shù)13
【解析】試題分析:根據(jù)多邊形的內(nèi)角和公式(n-2)180°可知,多邊形的內(nèi)角和是180°的倍數(shù),然后列式求解即可.
試題解析:設(shè)多邊形的邊數(shù)是n,加的外角為α,則
(n-2)180°+α=2018°,
α=2378°-180°n,又0<α<180°,
即0<2378°-180°n<180°,
解得: <n<,
又n為正整數(shù),
可得n=13,
此時α=38°滿足條件,
答:這個外角的度數(shù)是38°,它的13邊形.
【點(diǎn)睛】本題考查了多邊形的內(nèi)角和公式,利用好多邊形的內(nèi)角和是180°的倍數(shù)是解題的關(guān)鍵.
【題型】解答題
【結(jié)束】
22
【題目】已知, 求 (1) ; (2) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在邊長為2的正三角形ABC中,E、F、G分別為AB、
AC、BC的中點(diǎn),點(diǎn)P為線段EF上一個動點(diǎn),連接BP、GP,則△BPG的周長的最小值是
_ ▲ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+4x+c與y軸交于點(diǎn)A(0,5),與x軸交于點(diǎn)E,B,點(diǎn)B坐標(biāo)為(5,0).
(1)求二次函數(shù)解析式及頂點(diǎn)坐標(biāo);
(2)過點(diǎn)A作AC平行于x軸,交拋物線于點(diǎn)C,點(diǎn)P為拋物線上的一點(diǎn)(點(diǎn)P在AC上方),作PD平行于y軸交AB于點(diǎn)D,問當(dāng)點(diǎn)P在何位置時,四邊形APCD的面積最大?并求出最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知坐標(biāo)原點(diǎn)為,點(diǎn),將繞原點(diǎn)順時針旋轉(zhuǎn)后,的對應(yīng)點(diǎn)的坐標(biāo)是( )
A. (2,-1) B. (-2,1) C. (1,-2) D. (-1,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“揚(yáng)州漆器”名揚(yáng)天下,某網(wǎng)店專門銷售某種品牌的漆器筆筒,成本為30元/件,每天銷售量(件)與銷售單價(元)之間存在一次函數(shù)關(guān)系,如圖所示.
(1)求與之間的函數(shù)關(guān)系式;
(2)如果規(guī)定每天漆器筆筒的銷售量不低于240件,當(dāng)銷售單價為多少元時,每天獲取的利潤最大,最大利潤是多少?
(3)該網(wǎng)店店主熱心公益事業(yè),決定從每天的銷售利潤中捐出150元給希望工程,為了保證捐款后每天剩余利潤不低于3600元,試確定該漆器筆筒銷售單價的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC,AD⊥BD于點(diǎn)D,DE∥AC交AB于點(diǎn)E,若AB=8,則DE=_______
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,直線l1與x軸、y軸分別交于點(diǎn)A(3,0)、B(0,2).
(1)如圖2,點(diǎn)M是AB的中點(diǎn),過點(diǎn)M作ME⊥x軸,MF⊥y軸,垂足分別為E、F.則點(diǎn)M 的坐標(biāo)為 ;
(2)如圖3,直線l2經(jīng)過點(diǎn)B,且與l1互相垂直,過點(diǎn)C(0,﹣1)作CD⊥y軸,交l2于點(diǎn)D.則以直線l2為圖像的函數(shù)表達(dá)式為 ;
(3)圖1中,在x軸上是否存在點(diǎn)P,使得△APB是等腰三角形.如果存在,請求出點(diǎn)P的坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】雅安地震牽動著全國人民的心,某單位開展了“一方有難,八方支援”賑災(zāi)捐款活動.第一天收到捐款10 000元,第三天收到捐款12 100元.
(1)如果第二天、第三天收到捐款的增長率相同,求捐款增長率;
(2)按照(1)中收到捐款的增長速度,第四天該單位能收到多少捐款?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com