【題目】如圖,在△ABC中,AB=AC,以AC為直徑作⊙O交BC于點D,過點D作⊙O的切線,交AB于點E,交CA的延長線于點F.
(1)求證:EF⊥AB;
(2)若∠C=30°,EF= ,求EB的長.
【答案】
(1)證明:連接AD、OD
,
∵AC為⊙O的直徑,
∴∠ADC=90°,
又∵AB=AC,
∴CD=DB,又CO=AO,
∴OD∥AB,
∵FD是⊙O的切線,
∴OD⊥EF,
∴FE⊥AB
(2)解:∵∠C=30°,
∴∠AOD=60°,
∴∠F=30°,
∴OA=OD= OF,
∵∠AEF=90°EF= ,
∴AE= ,
∵OD∥AB,OA=OC=AF,
∴OD=2AE=2 ,AB=2OD=4 ,
∴EB=3
【解析】(1)連接AD、OD,根據(jù)直徑所對的圓周角是直角求出∠ADC=90°,根據(jù)等腰三角形的性質(zhì)證明D是BC的中點,得到OD是△ABC的中位線,根據(jù)切線的性質(zhì)證明結(jié)論;(2)根據(jù)三角形的內(nèi)角和得到∠AOD=60°,∠F=30°,根據(jù)直角三角形的性質(zhì)得到OA=OD= OF,求得AE= 根據(jù)平行線等分線段定理得到OD=2AE=2 ,AB=2OD=4 ,由線段的和差即可得到結(jié)論.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠為了解工人在單位時間內(nèi)加工同一種零件的技能水平,隨機抽取了50名工人加工的零件進行檢測,統(tǒng)計出他們各自加工的合格品數(shù)是1到8這八個整數(shù),現(xiàn)提供統(tǒng)計圖的部分信息如圖.
請解答下列問題:
(1)根據(jù)統(tǒng)計圖,寫出這50名工人加工出的合格品數(shù)的中位數(shù).
(2)寫出這50名工人加工出合格品數(shù)的眾數(shù)的可能取值.
(3)廠方認定,工人在單位時間內(nèi)加工出的合格品數(shù)不低于2件為技能合格,否則,將接受技能再培訓(xùn),已知該廠有同類工人400名,請估計該廠將接受技能再培訓(xùn)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,△ABC的外角∠ABD的平分線與∠ACB的平分線交于點O,MN過點O,且MN∥BC,分別交AB、AC于點M、N.
求證:(1)MO=MB;(2)MN=CN﹣BM.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖①是一個長為2m、寬為2n的長方形,沿圖中虛線用剪刀把它均分成四個小長方形,然后按圖②的形狀拼成一個正方形.
(1)你認為圖②中的陰影部分的正方形的邊長等于多少?
(2)請用兩種不同的方法求圖②中陰影部分的面積.
(3)觀察圖②你能寫出下列三個代數(shù)式之間的等量關(guān)系嗎?
代數(shù)式:(m+n)2,(m-n)2,mn.
(4)根據(jù)(3)題中的等量關(guān)系,解決如下問題:
已知a+b=7,ab=5,求(a-b)2的值.(寫出過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠AOC與∠BOD都是直角,∠BOC=65°
(1)求∠AOD的度數(shù);
(2)∠AOB與∠DOC有何大小關(guān)系?
(3)若不知道∠BOC的具體度數(shù),其他條件不變,(2)的關(guān)系仍成立嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB、CD交于點O,OE平分∠AOD,OF平分∠BOD.
(1)∠AOC=50°,求∠DOF與∠DOE的度數(shù),并計算∠EOF的度數(shù);
(2)當∠AOC的度數(shù)變化時,∠EOF的度數(shù)是否變化?若不變,求其值;若變化,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,∠E=∠F=90°,∠B=∠C,AE=AF.有以下結(jié)論:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正確的有( ).
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2+mx+m﹣2=0.
(1)求證:無論m取何值時,方程總有兩個不相等的實數(shù)根;
(2)設(shè)方程兩實數(shù)根分別為x1 , x2 , 且滿足x12+x22=﹣3x1x2 , 求實數(shù)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=c,AC=b.AD是△ABC的角平分線,DE⊥AB于E,DF⊥AC于F,EF與AD相交于O,已知△ADC的面積為1.
(1)證明:DE=DF;
(2)試探究線段EF和AD是否垂直?并說明理由;
(3)若△BDE的面積是△CDF的面積2倍.試求四邊形AEDF的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com