【題目】在平面直角坐標(biāo)系中,,,點繞點旋轉(zhuǎn)得到點,則點的坐標(biāo)為______.
【答案】或
【解析】
根據(jù)題意畫出圖形,分兩種情況證△AOB≌△CDA,求出CD、OD的長即可求出點C的坐標(biāo).
由題意知:∠BAC=,AB=AC,
∴∠OAB+∠CAD=,
∵,,
∴OA=1,OB=3,
如圖,當(dāng)點B繞點A逆時針旋轉(zhuǎn)時,過點C作CD⊥x軸于D,
∴∠ADC=∠AOB=,
∵∠ABO+∠OAB=,
∴∠ABO=∠ACD,
∴△AOB≌△CDA,
∴AD=OB=3,CD=OA=1,
∴OD=1+3=4,
∴點C的坐標(biāo)為:;
如圖,當(dāng)點B繞點A順時針旋轉(zhuǎn)時,過點C作CD⊥x軸于D,
同理可證△AOB≌△CDA,
∴AD=OB=3,CD=OA=1,
∴OD=3-1=2,
∴點C的坐標(biāo)為:
綜上,點C的坐標(biāo)是或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,菱形OABC的頂點A在x軸上,頂點B的坐標(biāo)為(8,4),點P是對角線OB上一個動點,點D的坐標(biāo)為(0,﹣2),當(dāng)DP與AP之和最小時,點P的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD是⊙O的圓內(nèi)接四邊形,線段AB是⊙O的直徑,連結(jié)AC.BD.點H是線段BD上的一點,連結(jié)AH、CH,且∠ACH=∠CBD,AD=CH,BA的延長線與CD的延長線相交與點P.
(1)求證:四邊形ADCH是平行四邊形;
(2)若AC=BC,PB=PD,AB+CD=2(+1)
①求證:△DHC為等腰直角三角形;②求CH的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,M是圓中上一定點,P是弦AB上一動點,過點A作射線MP的垂線交圓于點C,連接PC.已知AB=5cm,設(shè)A、P兩點間的距離為xcm,A、C兩點間的距離為y1cm,P、C兩點的距離為y2cm.小帥根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,分別對函數(shù)y1、y2隨自變量x的變化而變化的規(guī)律進行了探究.
下面是小帥的探究過程,請補充完整:
(1)按照表中自變量x的值進行取點,畫圖、測量,分別得到了y1、y2與x的幾組對應(yīng)值;
x/cm | 0 | 1 | 2 | 3 | 4 | 5 |
y1/cm | 2.55 | 3.15 | 3.95 | 4.76 | 4.95 | 4.30 |
y2/cm | 2.55 | 2.64 | 2.67 |
| 1.13 | 2.55 |
(2)在同一平面直角坐標(biāo)系xOy中,描出補全后的表中各組數(shù)值所對應(yīng)的點(x,y1),(x,y2),并畫出函數(shù)y1、y2的圖象;
(3)結(jié)合函數(shù)圖象,解決問題:在點P的運動過程中,當(dāng)AC與PC的差為最大值時,AP的長度約為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系xOy中,O為坐標(biāo)原點,直線AB分別與y軸,x軸交于A(0,4),B(3,0)兩點.
(1)尺規(guī)作圖:在x軸上求作一點C,使得△ABC是以為頂角的等腰三角形,并在圖中標(biāo)明相應(yīng)字母;(保留作圖痕跡,不寫作法)
(2)在(1)的條件下,求點C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)團委會為研究該校學(xué)生的課余活動情況,采取抽樣的方法,從閱讀、運動、娛樂、其它等四個方面調(diào)查了若干名學(xué)生的興趣愛好,并將調(diào)查的結(jié)果繪制了如下的兩幅不完整的統(tǒng)計圖(如圖1,圖2),請你根據(jù)圖中提供的信息解答下列問題:
(1)在這次研究中,一共調(diào)查了多少名學(xué)生?
(2)“其它”在扇形圖中所占的圓心角是多少度?
(3)補全頻數(shù)分布折線圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了激勵學(xué)生熱愛數(shù)學(xué),刻苦鉆研,馬鞍山市某學(xué)校八年級舉行了一次數(shù)學(xué)競賽,成績由低到高分為五個等級.競賽結(jié)束后老師隨機抽取了部分學(xué)生的成績情況繪制成如下的條形圖和扇形圖,請根據(jù)提供的信息解答以下問題.
補全條形統(tǒng)計圖和統(tǒng)計扇形圖.
在本次抽樣調(diào)查中,成績的眾數(shù)和中位數(shù)分別處于哪個等級?
成績?yōu)?/span>等級的五個人中有名男生名女生,若從中任選兩人,則兩人恰好是一男一女的概率為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,以為直徑的交邊于點(點不與點重合),交邊于點,過點作,垂足為.
(1)求證:是的切線;
(2)若,.
①求的半徑;
②連接交于點,則_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商家在購進一款產(chǎn)品時,由于運輸成本及產(chǎn)品成本的提高,該產(chǎn)品第 x 天的成本 y(元/件)與 x(天)之間的關(guān)系如圖所示,并連續(xù) 60 天均以 80 元/件的價格出售, 第 x 天該產(chǎn)品的銷售量 z(件)與 x(天)滿足關(guān)系式 z=x+15.
(1)第 25 天,該商家的成本是 元,獲得的利潤是 元;
(2)設(shè)第 x 天該商家出售該產(chǎn)品的利潤為 w 元.
①求 w 與 x 之間的函數(shù)關(guān)系式;
②求出第幾天的利潤最大,最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com