【題目】ABC中,DBC的中點(diǎn),點(diǎn)GAD上(點(diǎn)G不與A重合),過(guò)點(diǎn)G的直線交ABE,交射線AC于點(diǎn)F,設(shè)AE=xAB,AF=yACx,y≠0).

1)如圖1,若△ABC為等邊三角形,點(diǎn)GD重合,∠BDE=30,求證:△AEF∽△DEA;

2)如圖2,若點(diǎn)GD重合,求證:x+y=2xy;

3)如圖3,若AG=nGD,x=,y=,直接寫(xiě)出n的值.

【答案】1)見(jiàn)解析;(2)見(jiàn)解析;(3n=3

【解析】

1)先根據(jù)等邊三角形的性質(zhì)和中線的性質(zhì)得到∠BAD=30°,再求得∠F=BAD=30°即可證明;

2)先證明△DEB≌△DHC,得到CH=BE,再證明△FCH∽△FAE,最后運(yùn)用相似三角形的性質(zhì)即可證明;

3)先確定點(diǎn)EAB的中點(diǎn),然后根據(jù)DE是△ABC的中位線,得出DE=ACDE//AC可得△DGE∽△AGP,最后運(yùn)用相似三角形的性質(zhì)求解即可.

解:(1)∵△ABC為等邊三角形,

∴∠BAC=B=60°,AB=AC,

AD是△ABC的中線,

AD平分∠BAC,即∠BAD=BAC=30°,

∵∠BDE=30°,

∴∠BED=90°,即EFAB

∴∠F=90°-EAF=30°

∴∠F=BAD

∵∠AED=FEA=90°,

AEF∽△DEA

2)如圖2,過(guò)CCH//ABEFH,

∴∠B=DCH,∠BED=CHD,

AD是△ABC的中線

BD=CD,

∴△DEB≌△DHCAAS),

CH=BE,

CH//AB,

∴△FCH∽△FAE,CF_CH,

,

,

x+y=2xy;

3)如圖3,連接DE

y=

AF=AC,AC =AF

同理:AE=AB

∴點(diǎn)EAB的中點(diǎn)。

AD是△ABC的中線,即點(diǎn)DBC的中點(diǎn),

DE//AC.

∴△DGE∽△AGP

,即AG=3DG

n=3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,EAB上的一點(diǎn),△ADE△BCE都是等邊三角形,點(diǎn)P、Q、M、N分別為AB、BC、CD、DA的中點(diǎn),則四邊形MNPQ是( )

A.等腰梯形B.矩形C.菱形D.正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面上,邊長(zhǎng)為的正方形和短邊長(zhǎng)為的矩形幾何中心重合,如圖①,當(dāng)正方形和矩形都水平放置時(shí),容易求出重疊面積

甲、乙、丙三位同學(xué)分別給出了兩個(gè)圖形不同的重疊方式;

甲:矩形繞著幾何中心旋轉(zhuǎn),從圖②到圖③的過(guò)程中,重疊面積大小不變.

乙:如圖④,矩形繞著幾何中心繼續(xù)旋轉(zhuǎn),矩形的兩條長(zhǎng)邊與正方形的對(duì)角線平行時(shí),此時(shí)的重疊面積大于圖③的重疊面積.

丙:如圖⑤,將圖④中的矩形向左上方平移,使矩形的一條長(zhǎng)邊恰好經(jīng)過(guò)正方形的對(duì)角線,此時(shí)的重疊面積是個(gè)圖形中最小的.

下列說(shuō)法正確的是(

A.甲、乙、丙都對(duì)B.只有乙對(duì)C.只有甲不對(duì)D.甲、乙、丙都不對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè))

1)求拋物線的頂點(diǎn)坐標(biāo)(用含的代數(shù)式表示);

2)求線段AB的長(zhǎng);

3)拋物線與軸交于點(diǎn)C(點(diǎn)C不與原點(diǎn)重合),若的面積始終小于的面積,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)解下列方程.

根為______;

根為______;

根為______

2)根據(jù)這類方程特征,寫(xiě)出第n個(gè)方程和它的根;

3)請(qǐng)利用(2)的結(jié)論,求關(guān)于x的方程n為正整數(shù))的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC內(nèi)接于O,且ABO的直徑,ODAB,與AC交于點(diǎn)E,∠D=2∠A

(1)求證:CDO的切線;

(2)求證:DEDC

(3)若OD=5,CD=3,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,ACBC,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°,得到△ADE,連接BE,則∠BED的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)解析式為ymx22mx+m,二次函數(shù)與x軸交于A、B兩點(diǎn)(BA右側(cè)),與y軸交于C點(diǎn),二次函數(shù)頂點(diǎn)為M.已知OMB90°

求頂點(diǎn)坐標(biāo).

求二次函數(shù)解析式.

③N為線段BM中點(diǎn),在二次函數(shù)的對(duì)稱軸上是否存在一點(diǎn)P,使得∠PON60°,若存在求出點(diǎn)P坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】郴州市正在創(chuàng)建全國(guó)文明城市,某校擬舉辦創(chuàng)文知識(shí)搶答賽,欲購(gòu)買(mǎi)A、B兩種獎(jiǎng)品以鼓勵(lì)搶答者.如果購(gòu)買(mǎi)A20件,B15件,共需380元;如果購(gòu)買(mǎi)A15件,B10件,共需280元.

(1)A、B兩種獎(jiǎng)品每件各多少元?

(2)現(xiàn)要購(gòu)買(mǎi)A、B兩種獎(jiǎng)品共100件,總費(fèi)用不超過(guò)900元,那么A種獎(jiǎng)品最多購(gòu)買(mǎi)多少件?

查看答案和解析>>

同步練習(xí)冊(cè)答案