【題目】如圖,⊙O的直徑AB的長(zhǎng)為10,弦AC長(zhǎng)為6,∠ACB的平分線交⊙OD

1)求BC的長(zhǎng).

2)連接ADBD,判斷ABD的形狀,說(shuō)明理由.并求BD的長(zhǎng).

3)求CD的長(zhǎng).

【答案】1BC8;(2)△ABD為等腰直角三角形.理由見(jiàn)解析;BD5;(3CD7

【解析】

1)根據(jù)圓周角定理得到∠ACB=90°,然后利用勾股定理可計(jì)算出BC;

2)根據(jù)圓周角定理得到∠ADB=90°,再根據(jù)角平分線定義得∠ACD=BCD,則AD=BD,于是可判斷ABD為等腰直角三角形,然后根據(jù)等腰直角三角形的性質(zhì)得到BD=.

3)根據(jù)已知條件可證BCH為等腰直角三角形,即可得CH的長(zhǎng)度,后根據(jù)勾股定理可得DH 長(zhǎng)度,即可求得CD長(zhǎng)度.

1)∵AB為⊙O的直徑,

∴∠ACB90°

RtACB中,AB10,AC6

BC8;

2ABD為等腰直角三角形.理由如下:

AB為⊙O的直徑, ∴∠ADB90°

∵∠ACB的平分線交⊙OD,

∴∠ACD=∠BCD ADBD,

∴△ABD為等腰直角三角形,

BD AB5;

3)作BHCDH,如圖,

∵∠BCH45°

∴△BCH為等腰直角三角形,

BHCHBC4,

RtBDH中,DH

CDCH+DH4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù)y=ax+b與反比例函數(shù),其中ab0,ab為常數(shù),它們?cè)谕蛔鴺?biāo)系中的圖象可以是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形 ACDE 是證明勾股定理時(shí)用到的一個(gè)圖形,a 、b 、cRtABCRtBED 的邊長(zhǎng),已知,這時(shí)我們把關(guān)于 x 的形如二次方程稱(chēng)為勾系一元二次方程

請(qǐng)解決下列問(wèn)題:

(1)寫(xiě)出一個(gè)勾系一元二次方程;

(2)求證:關(guān)于 x勾系一元二次方程,必有實(shí)數(shù)根;

(3)若 x 1勾系一元二次方程的一個(gè)根,且四邊形 ACDE 的周長(zhǎng)是6,求ABC 的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)的圖象交于A(m,6),B(3,n)兩點(diǎn).

(1)求一次函數(shù)的解析式;

(2)根據(jù)圖象直接寫(xiě)出的x的取值范圍;

(3)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在正方形ABCD中,點(diǎn)E、F分別在BCCD上,AE = AF

1)求證:BE = DF

2)連接ACEF于點(diǎn)O,延長(zhǎng)OC至點(diǎn)M,使OM = OA,連接EM、FM.判斷四邊形AEMF是什么特殊四邊形?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,等邊三角形ABC中,D、E分別是BCAC上的點(diǎn),且AE=CD,

1)求證:AD=BE.

2)求:∠BFD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,E是邊長(zhǎng)為1的正方形ABCD的對(duì)角線BD上一動(dòng)點(diǎn),點(diǎn)E從點(diǎn)B向點(diǎn)D運(yùn)動(dòng)(與點(diǎn)B,D不重合),過(guò)點(diǎn)E作直線GHBC,交AB于點(diǎn)G,交CD于點(diǎn)H,EFAE,交CD(CD的延長(zhǎng)線)于點(diǎn)F.

(1)如圖①,求證:△AGE≌△EHF.

(2)在點(diǎn)E的運(yùn)動(dòng)過(guò)程中(如圖①,②),四邊形AFHG的面積是否會(huì)發(fā)生變化?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形ABCD的邊長(zhǎng)為6,BE=EC,將正方形邊CD沿DE折疊到DF,延長(zhǎng)EFABG,連接DG,現(xiàn)在有如下4個(gè)結(jié)論:;在以上4個(gè)結(jié)論中,正確的有(

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知A(﹣2,0),以B01)為圓心,OB長(zhǎng)為半徑作B,NB上一個(gè)動(dòng)點(diǎn),直線ANy軸于M點(diǎn),則△AOM面積的最大值是( 。

A. 2B. C. 4D.

查看答案和解析>>

同步練習(xí)冊(cè)答案