【題目】化簡題:
(1)(5a2+2a﹣1)-4(3﹣8a+2a2);(2)3x2﹣〔7x-(4x-3)-2x2〕
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+3與x軸交于A、B兩點,過點A的直線l與拋物線交于點C,其中A點的坐標(biāo)是(1,0),C點坐標(biāo)是(4,3).
(1)求拋物線的解析式;
(2)設(shè)直線l與y軸交于點D,拋物線交y軸于點E,則△DBE的面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點E,F(xiàn)分別在邊AB,BC上,且AE=AB,將矩形沿直線EF折疊,點B恰好落在AD邊上的點P處,連接BP交EF于點Q,對于下列結(jié)論:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等邊三角形.其中正確的是( )
A.①② B.②③ C.①③ D.①④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,AB∥OC,A(0,12),B(a,c),C(b,0),并且a,b滿足b=++16.一動點P從點A出發(fā),在線段AB上以每秒2個單位長度的速度向點B運動;動點Q從點O出發(fā)在線段OC上以每秒1個單位長度的速度向點C運動,點P、Q分別從點A、O同時出發(fā),當(dāng)點P運動到點B時,點Q隨之停止運動.設(shè)運動時間為t(秒)
(1)求B、C兩點的坐標(biāo);
(2)當(dāng)t為何值時,四邊形PQCB是平行四邊形?并求出此時P、Q兩點的坐標(biāo);
(3)當(dāng)t為何值時,△PQC是以PQ為腰的等腰三角形?并求出P、Q兩點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點A(3,4),B(﹣3,0).
(1)只用直尺(沒有刻度)和圓規(guī)按下列要求作圖.
(要求:保留作圖痕跡,不必寫出作法)
Ⅰ)AC⊥y軸,垂足為C;
Ⅱ)連結(jié)AO,AB,設(shè)邊AB,CO交點E.
(2)在(1)作出圖形后,直接判斷△AOE與△BOE的面積大小關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y =-x+2的圖象不經(jīng)過( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某老師在試卷分析中說:參加這次考試的41位同學(xué)中,考121分的人數(shù)最多,雖然最高的同學(xué)獲得了滿分150分,但是十分遺憾最低的同學(xué)仍然只得了56分,其中分?jǐn)?shù)居第21位的同學(xué)獲得116分.這說明本次考試分?jǐn)?shù)的中位數(shù)是( )
A. 21 B. 103 C. 116 D. 121
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,矩形OABC的頂點O與坐標(biāo)原點重合,頂點A、C分別在坐標(biāo)軸上,頂點B的坐標(biāo)為(6,4),E為AB的中點,過點D(8,0)和點E的直線分別與BC、y軸交于點F、G.
(1)求直線DE的函數(shù)關(guān)系式;
(2)函數(shù)y=mx﹣2的圖象經(jīng)過點F且與x軸交于點H,求出點F的坐標(biāo)和m值;
(3)在(2)的條件下,求出四邊形OHFG的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=ax2+bx+c的圖象如圖所示,那么關(guān)于x的方程ax2+bx+c﹣3=0的根的情況是( )
A.有兩個不相等的實數(shù)根
B.有兩個異號實數(shù)根
C.有兩個相等實數(shù)根
D.無實數(shù)根
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com