作△ABC關(guān)于點(diǎn)O對稱的圖形.

【答案】分析:連接三角形三點(diǎn)與O的連線,并延長相同長度,得到三點(diǎn)的對應(yīng)點(diǎn),順次連接即可.
解答:解:所畫圖形如下所示:

其中△A′B′C′即為所求.
點(diǎn)評:此題考查了旋轉(zhuǎn)變換作圖的問題,找到各點(diǎn)關(guān)于點(diǎn)O的對稱點(diǎn)是解題的關(guān)鍵,難度一般.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC的高AE=5,BC=
403
,∠ABC=45°,F(xiàn)是AE上的點(diǎn),G是點(diǎn)E關(guān)于F的對稱點(diǎn)精英家教網(wǎng),過點(diǎn)G作BC的平行線與AB交于H、與AC交于I,連接IF并延長交BC于J,連接HF并延長交BC于K.
(1)請你探索并判斷四邊形HIKJ是怎樣的四邊形?并對你得到的結(jié)論予以證明;
(2)當(dāng)點(diǎn)F在AE上運(yùn)動(dòng)并使點(diǎn)H、I、K、J都在△ABC的三條邊上時(shí),求線段AF長的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,Rt△ABC的面積為2
3
,作每一頂點(diǎn)關(guān)于對邊的對稱點(diǎn)得△A1B1C1,則A1B1C1的面積為
 
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2012•李滄區(qū)一模)【問題引入】
幾個(gè)人拎著水桶在一個(gè)水龍頭前面排隊(duì)打水,水桶有大有小.他們該怎樣排隊(duì)才能使得總的排隊(duì)時(shí)間最短?
假設(shè)只有兩個(gè)人時(shí),設(shè)大桶接滿水需要T分鐘,小桶接滿水需要t分鐘(顯然T>t),若拎著大桶者在拎著小桶者之前,則拎大桶者可直接接水,只需等候T分鐘,拎小桶者一共等候了(T+t)分鐘,兩人一共等候了(2T+t)分鐘;反之,若拎小桶者在拎大桶者前面,容易求出出兩人接滿水等候(T+2t)分鐘.可見,要使總的排隊(duì)時(shí)間最短,拎小桶者應(yīng)排在拎大桶者前面.這樣,我們可以猜測,幾個(gè)人拎著水桶在一個(gè)水龍頭前面排隊(duì)打水,要使總的排隊(duì)時(shí)間最短,需將他們按水桶從小到大排隊(duì).
規(guī)律總結(jié):
事實(shí)上,只要不按從小到大的順序排隊(duì),就至少有緊挨著的兩個(gè)人拎著大桶者排在拎小桶者之前,仍設(shè)大桶接滿水需要T分鐘,小桶接滿水需要t分鐘,并設(shè)拎大桶者開始接水時(shí)已等候了m分鐘,這樣拎大桶者接滿水一共等候了(m+T)分鐘,拎小桶者一共等候了(m+T+t)分鐘,兩人一共等候了(2m+2T+t)分鐘,在其他人位置不變的前提下,讓這兩個(gè)人交還位置,即局部調(diào)整這兩個(gè)人的位置,同樣介意計(jì)算兩個(gè)人接滿水共等候了
2m+2t+T
2m+2t+T
分鐘,共節(jié)省了
T-t
T-t
分鐘,而其他人等候的時(shí)間未變,這說明只要存在有緊挨著的兩個(gè)人是拎大桶者在拎小桶者之前都可以這樣調(diào)整,從而使得總等候時(shí)間減少.這樣經(jīng)過一系列調(diào)整后,整個(gè)隊(duì)伍都是從小打到排列,就打到最優(yōu)狀態(tài),總的排隊(duì)時(shí)間就最短.
【方法探究】
一般的,對某些設(shè)計(jì)多個(gè)可變對象的數(shù)學(xué)問題,先對其少數(shù)對象進(jìn)行調(diào)整,其他對象暫時(shí)保持不變,從而化難為易,取得問題的局部解決.經(jīng)過若干次這種局部的調(diào)整,不斷縮小范圍,逐步逼近目標(biāo),最終使問題得到解決,這種數(shù)學(xué)思想就叫做局部調(diào)整法.
【實(shí)踐應(yīng)用1】
如圖1在銳角△ABC中,AB=4
2
,∠BAC=45°,∠BAC的平分線交BC于點(diǎn)D,M、N分別是AD和AB上的動(dòng)點(diǎn),則BM+MN的最小值是多少?
解析:
(1)先假定N為定點(diǎn),調(diào)整M到合適的位置使BM+MN有最小值(相對的),容易想到,在AC上作AN′=AN(即作點(diǎn)N關(guān)于AD的對稱點(diǎn)N'),連接BN′交AD于M,則M點(diǎn)是使BM+MN有相對最小值的點(diǎn).(如圖2,M點(diǎn)是確定方法找到的)
(2)在考慮點(diǎn)N的位置,使BM+MN最終達(dá)到最小值.可以理解,BM+MN=BM+MN′,所以要使BM+MN′有最小值,只需使
BM+MN′=BN′
BM+MN′=BN′
,此時(shí)BM+MN的最小值是
4
4

【實(shí)踐應(yīng)用2】
如圖3,把邊長是3的正方形等分成9個(gè)小正方形,在有陰影的小正方形內(nèi)(包括邊界)分別取點(diǎn)P、R,于已知格點(diǎn)Q(每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn))構(gòu)成三角形,則△PQR的最大面積是
2
2
,請?jiān)趫D4中畫出面積最大時(shí)的△PQR的圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•武侯區(qū)一模)已知a、b、c分別是△ABC的∠A、∠B、∠C的對邊(c>b),關(guān)于x的方程x2-2(b+c)x+2bc+a2=0有兩個(gè)相等的實(shí)數(shù)根,且∠B、∠C滿足關(guān)系式
3
sin∠B=sin∠C
,△ABC的外接圓面積為64π.
(1)求a,b,c的長.
(2)若D、E、F分別為AB、BC、AC的中點(diǎn),點(diǎn)P為AB邊上的一個(gè)動(dòng)點(diǎn),PQ∥AC,且交BC于點(diǎn)Q,以PQ為一邊向點(diǎn)B的異側(cè)作正三角形PQH,設(shè)正三角形PQH與矩形EDAF的公共部分的面積為S,BP的長為
3
x.直接寫出S與x之間的關(guān)系.
(3)在(2)的情況下,當(dāng)x=4
3
時(shí),求S的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

做如下操作:在等腰三角形ABC中,AB=AC,AD平分∠BAC交BC于點(diǎn)D,將△ABD作關(guān)于直線AD的軸對稱變換,所得的像與△ACD重合,對于下列結(jié)論:①在同一個(gè)三角形中,等角對等邊;②在同一個(gè)三角形中,等邊對等角;③等腰三角形的頂角平分線、底邊上的中線和高互相重合;由上述操作可得出的是( 。

查看答案和解析>>

同步練習(xí)冊答案