【題目】如圖①所示,空圓柱形容器內(nèi)放著一個實心的“柱錐體”(由一個圓柱和一個同底面的圓錐組成的幾何體).現(xiàn)向這個容器內(nèi)勻速注水,水流速度為5cm3/s,注滿為止.已知整個注水過程中,水面高度h(cm)與注水時間t(s)之間的關(guān)系如圖②所示.請你根據(jù)圖中信息,解答下列問題:

(1)圓柱形容器的高為cm,“柱錐體”中圓錐體的高為cm;
(2)分別求出圓柱形容器的底面積與“柱錐體”的底面積.

【答案】
(1)12;3
(2)

解:設(shè)圓柱形容器的底面積為S,

則S(12﹣8)=(42﹣26)×5,

解得,S=20,

設(shè)“柱錐體”的底面積為S柱錐,

S柱錐×5=20×5﹣15×5,

解得,S柱錐=5,

即圓柱形容器的底面積是20cm2,“柱錐體”的底面積是5cm2


【解析】解:(1)由題意和函數(shù)圖象可得,
圓柱容器的高為12cm,“柱錐體”中圓錐體的高為:8﹣5=3cm,
所以答案是:12,3;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是馬小哈同學(xué)做的一道題

解方程

:①去分母, 4(2x﹣1)=1﹣3(x+2)

去括號, 8x﹣4=1﹣3x﹣6

移項,8x+3x=1﹣6+4

合并同類項, 11x=﹣1

系數(shù)化為1,

(1)上面的解題過程中最早出現(xiàn)錯誤的步驟是(填代號) ;

(2)請在本題右邊正確的解方程

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),∠AOB=45°,點P、Q分別是邊OA,OB上的兩點,且OP=2cm.將∠O沿PQ折疊,點O落在平面內(nèi)點C處.

(1)當(dāng)PC∥QB時,OQ=;
(2)當(dāng)PC⊥QB時,求OQ的長.
(3)當(dāng)折疊后重疊部分為等腰三角形時,求OQ的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象相交于點A(m,3)、B(﹣6,n),與x軸交于點C.

(1)求一次函數(shù)y=kx+b的關(guān)系式;

(2)結(jié)合圖象,直接寫出滿足kx+b>的x的取值范圍;

(3)若點P在x軸上,且SACP=SBOC,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,D為AB延長線上一點,點E在BC邊上,且BE=BD,連結(jié)AE、DE、DC. ①求證:△ABE≌△CBD;
②若∠CAE=30°,求∠BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方體的展開圖如圖所示,如果正方體的六個面分別用字母A,B,C,D,E,F(xiàn)表示,當(dāng)各面上的數(shù)分別與它對面的數(shù)互為相反數(shù),且滿足B=1,C=﹣a2﹣2a+1,D=﹣1,E=3a+4,F(xiàn)=2﹣a時,求A面表示的數(shù)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,點A是半圓上一個三等分點,點B是 的中點,點P是直徑 MN上一動點,若⊙O的直徑為2,則AP+BP的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于的一次函數(shù)的圖象可能是( )

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】黃石市在創(chuàng)建國家級文明衛(wèi)生城市中,綠化檔次不斷提升.某校計劃購進A,B兩種樹木共100棵進行校園綠化升級,經(jīng)市場調(diào)查:購買A種樹木2棵,B種樹木5棵,共需600元;購買A種樹木3棵,B種樹木1棵,共需380元.

(1)求A種,B種樹木每棵各多少元?

(2)因布局需要,購買A種樹木的數(shù)量不少于B種樹木數(shù)量的3倍.學(xué)校與中標公司簽訂的合同中規(guī)定:在市場價格不變的情況下(不考慮其他因素),實際付款總金額按市場價九折優(yōu)惠,請設(shè)計一種購買樹木的方案,使實際所花費用最省,并求出最省的費用.

查看答案和解析>>

同步練習(xí)冊答案