(2013•濟(jì)南一模)完成下列各題:
(1)如圖1,四邊形ABCD中,AB∥CD,∠B=∠D,BC=6,AB=3,求四邊形ABCD的周長.
(2)已知:如圖2,在△ABC中,D為邊BC上的一點,AD平分∠EDC,且∠E=∠B,DE=DC.求證:AB=AC.
分析:(1)首先判定四邊形ABCD是平行四邊形,再根據(jù)平行四邊形的性質(zhì)和周長公式計算即可;
(2)由已知條件證明△ADE≌△ADC可得到∠E=∠C,又∠E=∠B,所以∠B=∠C,進(jìn)而證明AB=AC.
解答:(1)解:∵AB∥CD,
∴∠B+∠C=180°,
又∵∠B=∠D,
∴∠C+∠D=180°,
∴AD∥BC,
∴ABCD是平行四邊形,
∴AB=CD=3,BC=AD=6,
∴四邊形ABCD的周長=2×6+2×3=18;

(2)證明:∵AD平分∠EDC,
∴∠ADE=∠ADC,
又DE=DC,AD=AD,
∴△ADE≌△ADC,
∴∠E=∠C,
又∠E=∠B,
∴∠B=∠C,
∴AB=AC.
點評:(1)本題考查了平行四邊形的判定和平行四邊形的性質(zhì)以及求平行四邊形的周長;
(2)本題考查了全等三角形的判定和全等三角形的性質(zhì)以及等腰三角形的證明.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濟(jì)南一模)如圖,已知矩形ABCD中,AB=8cm,BC=6cm,如果點P由C出發(fā)沿CA方向向點A勻速運動,同時點Q由A出發(fā)沿AB方向向點B勻速運動,它們的速度均為2cm/s,連接PQ,設(shè)運動的時間為t.(單位:s).(0≤t≤4)解答下列問題:
(1)求AC的長;
(2)當(dāng)t為何值時,PQ∥BC;
(3)設(shè)△AQP的面積為S(單位:cm2),當(dāng)t為何值時,s=
365
cm2;
(4)是否存在某時刻t,使線段PQ恰好把△ABC的面積平分?若存在求出此時t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濟(jì)南一模)-2012的倒數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濟(jì)南一模)在某市開展城鄉(xiāng)綜合治理的活動中,需要將A、B、C三地的垃圾50立方米、40立方米、50立方米全部運往垃圾處理場D、E兩地進(jìn)行處理.已知運往D地的數(shù)量比運往E地的數(shù)量的2倍少10立方來.
(1)求運往D、E兩地的數(shù)量各是多少立方米?
(2)若A地運往D地a立方米(a為整數(shù)),B地運往D地30立方米.C地運往D地的數(shù)量小于A地運往D地的2倍.其余全部運往E地.且C地運往E地不超過12立方米.則A、C兩地運往D、E兩地有哪幾種方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濟(jì)南一模)完成下列各題:
(1)化簡:
2x
x2-4
-
1
x-2

(2)計算:(
1
2
)-1+(
3
-1)2-
36

查看答案和解析>>

同步練習(xí)冊答案