【題目】如圖,在平行四邊形ABCD中,邊AB的垂直平分線交AD于點E,交CB的延長線于點F,連接AF,BE.
(1)求證:△AGE≌△BGF;
(2)試判斷四邊形AFBE的形狀,并說明理由.
【答案】(1)證明見解析;(2)四邊形AFBE是菱形.
【解析】
試題分析:(1)由平行四邊形的性質(zhì)得出AD∥BC,得出∠AEG=∠BFG,由AAS證明△AGE≌△BGF即可;
(2)由全等三角形的性質(zhì)得出AE=BF,由AD∥BC,證出四邊形AFBE是平行四邊形,再根據(jù)EF⊥AB,即可得出結(jié)論.
試題解析:(1)證明:∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠AEG=∠BFG,∵EF垂直平分AB,∴AG=BG,在△AGEH和△BGF中,∵∠AEG=∠BFG,∠AGE=∠BGF,AG=BG,∴△AGE≌△BGF(AAS);
(2)解:四邊形AFBE是菱形,理由如下:
∵△AGE≌△BGF,∴AE=BF,∵AD∥BC,∴四邊形AFBE是平行四邊形,又∵EF⊥AB,∴四邊形AFBE是菱形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分10分)
問題背景:已知的頂點在的邊所在直線上(不與,重合).交所在直線于點,交所在直線于點.記的面積為,的面積為.
(1)初步嘗試:如圖①,當(dāng)是等邊三角形,,,且,時,則 ;
(2)類比探究:在(1)的條件下,先將點沿平移,使,再將繞點旋轉(zhuǎn)至如圖②所示位置,求的值;
(3)延伸拓展:當(dāng)是等腰三角形時,設(shè).
(I)如圖③,當(dāng)點在線段上運動時,設(shè),,求的表達式(結(jié)果用,和的三角函數(shù)表示).
(II)如圖④,當(dāng)點在的延長線上運動時,設(shè),,直接寫出的表達式,不必寫出解答過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運算中,正確的是( 。
A.5a+3b=8abB.4a3+2a2=6a5
C.8b2﹣7b2=1D.6ab2﹣6b2a=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,直線l1:y= x與直線l2:y=﹣x+6交于點A,l2與x軸交于B,與y軸交于點C.
(1)求△OAC的面積;
(2)如點M在直線l2上,且使得△OAM的面積是△OAC面積的 ,求點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合題
(1)問題
如圖1,點A為線段BC外一動點,且BC=a,AB=b.
填空:當(dāng)點A位于時,線段AC的長取得最大值,且最大值為(用含a,b的式子表示)
(2)應(yīng)用
點A為線段BC外一動點,且BC=3,AB=1,如圖2所示,分別以AB,AC為邊,作等邊三角形ABD和等邊三角形ACE,連接CD,BE.
①請找出圖中與BE相等的線段,并說明理由;
②直接寫出線段BE長的最大值.
(3)拓展:如圖3,在平面直角坐標(biāo)系中,點A的坐標(biāo)為(2,0),點B的坐標(biāo)為(5,0),點P為線段AB外一動點,且PA=2,PM=PB,∠BPM=90,請直接寫出線段AM長的最大值及此時點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中有三點A(﹣2,1)、B(3,1)、C(2,3).請回答如下問題:
(1)①在坐標(biāo)系內(nèi)描出點A、B、C的位置,并求△ABC的面積;②在平面直角坐標(biāo)系中畫出△A′B′C′,使它與△ABC關(guān)于x軸對稱,并寫出△A′B′C′三頂點的坐標(biāo);
(2)若M(x,y)是△ABC內(nèi)部任意一點,請直接寫出這點在△A′B′C′內(nèi)部的對應(yīng)點M′的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD中,AB=3,AD=2,分別以邊AD,BC為直徑在矩形ABCD的內(nèi)部作半圓O1和半圓O2,一平行于AB的直線EF與這兩個半圓分別交于點E、點F,且EF=2(EF與AB在圓心O1和O2的同側(cè)),則由,EF,,AB所圍成圖形(圖中陰影部分)的面積等于 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com