【題目】如圖,在菱形ABCD中,∠ABC=60°,AB=1,點(diǎn)P是這個(gè)菱形內(nèi)部或邊上的一點(diǎn),若以點(diǎn)P、B、C為頂點(diǎn)的三角形是等腰三角形,則P、D(P、D兩點(diǎn)不重合)兩點(diǎn)間的最短距離為多少?( )
A. 1 B. C. 2 D. -1
【答案】D
【解析】分析:分三種情形討論①若以邊BC為底.②若以邊PC為底.③若以邊PB為底.分別求出PD的最小值,即可判斷.
詳解::在菱形ABCD中,
∵∠ABC=60°,AB=1,
∴△ABC, △ACD都是等邊三角形,
①若以邊BC為底,則BC垂直平分線上(在菱形的邊及其內(nèi)部)的點(diǎn)滿足題意,此時(shí)就轉(zhuǎn)化為了“直線外一點(diǎn)與直線上所有點(diǎn)連線的線段中垂線段最短“,即當(dāng)點(diǎn)P與點(diǎn)A重合時(shí),PD值最小,最小值為1;
②若以邊PB為底, ∠PCB為頂角,以點(diǎn)C為圓心,BC為半徑作圓,則弧BD上的點(diǎn)A與點(diǎn)D均滿足△PBC為等腰三角形,當(dāng)點(diǎn)P與點(diǎn)D重合時(shí),PD最小,顯然不滿足題意,故此種情況不存在;
③若以邊PC為底, ∠PBC為頂角時(shí),以點(diǎn)B為圓心,BC長(zhǎng)為半徑作圓,與BD相交于一點(diǎn),則弧AC(除點(diǎn)C外)上的所有點(diǎn)都滿足△PBC是等腰三角形,當(dāng)點(diǎn)P在BD上時(shí),PD最小.
∵四邊形ABCD是菱形,∠ABC=60°,
∴AB=BC=CD=AD,∠ABC=∠ADC=60°,
∴△ABC,△ADC是等邊三角形,
∴BO=DO=sin60 ×1=,
∴BD=2BO=2×=,
∴PD =BD-BP=-1.
∵-1<1,
∴PD的最小值為-1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,G是BD上一點(diǎn),連接CG并延長(zhǎng)交BA的延長(zhǎng)線于點(diǎn)F,交AD于點(diǎn)E.
(1)求證:△ADG≌△CDG.
(2)若=,EG=4,求AG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】感知與填空:如圖①,直線,求證:.
閱讀下面的解答過(guò)程,并填上適當(dāng)?shù)睦碛桑?/span>
解:過(guò)點(diǎn)作直線,
( )
(已知),,
( )
( )
,
( )
應(yīng)用與拓展:如圖②,直線,若.
則 度
方法與實(shí)踐:如圖③,直線,若,則 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某中學(xué)舉辦“網(wǎng)絡(luò)安全知識(shí)答題競(jìng)賽”,初、高中部根據(jù)初賽成績(jī)各選出5名選手組成初中代表隊(duì)和高中代表隊(duì)參加學(xué)校決賽,兩個(gè)隊(duì)各選出的5名選手的決賽成績(jī)?nèi)鐖D所示.
平均分(分) | 中位數(shù)(分) | 眾數(shù)(分) | 方差(分2) | |
初中部 | a | 85 | b | s初中2 |
高中部 | 85 | c | 100 | 160 |
(1)根據(jù)圖示計(jì)算出a、b、c的值;
(2)結(jié)合兩隊(duì)成績(jī)的平均數(shù)和中位數(shù)進(jìn)行分析,哪個(gè)隊(duì)的決賽成績(jī)較好?
(3)計(jì)算初中代表隊(duì)決賽成績(jī)的方差s初中2,并判斷哪一個(gè)代表隊(duì)選手成績(jī)較為穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了調(diào)查學(xué)生對(duì)垃圾分類及投放知識(shí)的了解情況,從甲、乙兩校各隨機(jī)抽取40名學(xué)生進(jìn)行了相關(guān)知識(shí)測(cè)試,獲得了他們的成績(jī)(百分制),并對(duì)數(shù)據(jù)(成績(jī))進(jìn)行了整理、描述和分析。下面給出了部分信息.
a.甲、乙兩校40名學(xué)生成績(jī)的頻數(shù)分布統(tǒng)計(jì)表如下:
(說(shuō)明:成績(jī)80分及以上為優(yōu)秀,7079分為良好,6069分為合格,60分以下為不合格)
b.甲校成績(jī)?cè)?/span>70x<80這一組的是:70 70 70 71 72 73 73 73 74 75 76 77 78
c.甲、乙兩校成績(jī)的平均分、中位數(shù)、眾數(shù)如下:
根據(jù)以上信息,回答下列問(wèn)題:
(1)寫出表中n的值;
(2)在此次測(cè)試中,某學(xué)生的成績(jī)是74分,在他所屬學(xué)校排在前20名,由表中數(shù)據(jù)可知該學(xué)生是___校的學(xué)生(填“甲”或“乙”),理由是___;
(3)假設(shè)乙校800名學(xué)生都參加此次測(cè)試,估計(jì)成績(jī)優(yōu)秀的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將正方形ABCD折疊,使頂點(diǎn)A與CD邊上的一點(diǎn)H重合(H不與端點(diǎn)C,D重合),折痕交AD于點(diǎn)E,交BC于點(diǎn)F,邊AB折疊后與邊BC交于點(diǎn)G,如果正方形ABCD的邊長(zhǎng)為1,則△CHG的周長(zhǎng)為__________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,A(﹣,0)、B(0,1)分別為x軸、y軸上的點(diǎn),△ABC為等邊三角形,點(diǎn)P(3,a)在第一象限內(nèi),且滿足2S△ABP=S△ABC,則a的值為( 。
A.B.C.D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】初一(1)班針對(duì)“你最喜愛(ài)的課外活動(dòng)項(xiàng)目”對(duì)全班學(xué)生進(jìn)行調(diào)查(每名學(xué)生分別選一個(gè)活動(dòng)項(xiàng)目),并根據(jù)調(diào)查結(jié)果列出統(tǒng)計(jì)表,繪制成扇形統(tǒng)計(jì)圖.
根據(jù)以上信息解決下列問(wèn)題:
(1) , ;
(2)扇形統(tǒng)計(jì)圖中機(jī)器人項(xiàng)目所對(duì)應(yīng)扇形的圓心角度數(shù)為 ;
(3)從選航模項(xiàng)目的名學(xué)生中隨機(jī)選取名學(xué)生參加學(xué)校航模興趣小組訓(xùn)練,請(qǐng)用列舉法(畫樹(shù)狀圖或列表)求所選取的名學(xué)生中恰好有名男生、名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,將一矩形紙片ABCD沿著EF折疊,CE交AF于點(diǎn)G,過(guò)點(diǎn)G作GH∥EF,交線段BE于點(diǎn)H.
①判斷EG與EH是否相等,并說(shuō)明理由.
②判斷GH是否平分∠AGE,并說(shuō)明理由.
(2)如圖2,如果將(1)中的已知條件改為折疊三角形紙片ABC,其它條件不變.
①判斷EG與EH是否相等,并說(shuō)明理由.
②判斷GH是否平分∠AGE,如果平分,請(qǐng)說(shuō)明理由;如果不平分,請(qǐng)用等式表示∠EGH,∠AGH與∠C的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com