在直角坐標(biāo)系中,正方形OABC的兩邊OC、OA分別在x軸、y軸上,A點(diǎn)的坐標(biāo)為(O,4).
(1)將正方形ABCO繞點(diǎn)O順時(shí)針旋轉(zhuǎn)30°,得正方形ODEF,邊DE交BC于G,求G點(diǎn)坐標(biāo).
(2)如圖,⊙O1與正方形ABCO四邊都相切,直線MQ切⊙O1于P,分別交y軸、x軸、線段BC于M、N、Q.求證:O1N平分∠MO1Q.精英家教網(wǎng)
分析:(1)利用圖形的旋轉(zhuǎn)前后大小不變,可得出三角形全等.
(2)利用切線長(zhǎng)定理可以得出.
解答:(1)解:連OG,OA=OC=4.由Rt△DOG≌Rt△COG,
∴∠DOG=∠COG=30°,∴GC=
3
3
OC=
4
3
3
,∴G(4,
4
3
3
).

(2)證明:設(shè)⊙O1切OA、OC、BC分別于E、F、G,連接O1E、O1F、O1G,則E,O1、G共線.
由切線長(zhǎng)定理可證△MEO1≌△MPO1,△PO1Q≌△GO1Q,
∠EO1M=∠PO1M,∠GO1Q=∠PO1Q,∴∠MO1Q=∠EO1G=90°.
∵AM∥O1F,精英家教網(wǎng)
∴∠AMO1=∠1,
∵△PO1Q≌△GO1Q,
∴∠3=∠2,
∵∠O1MN+∠1+∠4=90°,
∠O1MN=∠1,
∴2∠1+∠4=90°,
∵∠2+∠3+∠4=90°,∠2=∠3,
∴2∠2+∠4=90°,
∴∠1=∠2,
∴∠AMO1=∠1=∠2,∠PO1N=∠FO1N,
∴∠MO1N=∠QO1N,O1N平分∠MO1Q.
點(diǎn)評(píng):此題考查了切線長(zhǎng)定理以及旋轉(zhuǎn)圖形前后全等,題目比較典型,同學(xué)們應(yīng)細(xì)心完成.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在直角坐標(biāo)系中,正方形ABOD的邊長(zhǎng)為a,O為原點(diǎn),點(diǎn)B在x軸的負(fù)半軸上,點(diǎn)D在y軸的正半軸上,直線OM的解析式為y=2x,直線CN過(guò)x軸上的一點(diǎn)C(-
3
5
a
,0)且與OM平行,交AD于點(diǎn)E,現(xiàn)正方形以每秒為
a
10
的速度勻速沿x軸正方向右平行移動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,正方形被夾在直線CE和OF間的部分為S,
(1)求點(diǎn)A、B、D的坐標(biāo);
(2)求梯形ECOD的面積;
(3)0≤t<4時(shí),寫(xiě)出S與t的函數(shù)關(guān)系式.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系中,正方形ABOD的邊長(zhǎng)為5,O為原點(diǎn),點(diǎn)B在x軸的負(fù)半軸上,點(diǎn)D在y軸的正半軸上,直線OE的解析式為y=2x,直線CF過(guò)x軸上一點(diǎn)C(-3,0)且與OE平行.現(xiàn)正方形以每秒
12
的速度勻速沿x軸的正方向平行移動(dòng),設(shè)精英家教網(wǎng)運(yùn)動(dòng)時(shí)間為t秒,正方形被夾在直線OE與CF間的部分的面積為S.
(1)當(dāng)0≤t<4時(shí),寫(xiě)出S與t的函數(shù)關(guān)系;
(2)當(dāng)4≤t≤5時(shí),寫(xiě)出S與t的函數(shù)關(guān)系,在這個(gè)范圍內(nèi)S有無(wú)最大值?若有,請(qǐng)求出這個(gè)最大值;若沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),正方形OABC的頂點(diǎn)A恰好落在雙曲線y=
3
x
(x>0)上,且OA與x軸正方向的夾角為30°.則正方形OABC的面積是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2010•本溪一模)在直角坐標(biāo)系中,放置一個(gè)如圖的直角三角形紙片AOB,已知OA=2,∠AOB=30°,D、E兩點(diǎn)同時(shí)從原點(diǎn)O出發(fā),D點(diǎn)以每秒
3
個(gè)單位長(zhǎng)度的速度沿y軸正方向運(yùn)動(dòng),E點(diǎn)以每秒1個(gè)單位長(zhǎng)度的速度沿x軸正方向運(yùn)動(dòng),設(shè)D、E兩點(diǎn)的運(yùn)動(dòng)時(shí)間為t秒(t≠0).
(1)在點(diǎn)D、E的運(yùn)動(dòng)過(guò)程中,直線DE與線段OA垂直嗎?請(qǐng)說(shuō)明理由;
(2)當(dāng)時(shí)間t在什么范圍時(shí),直線DE與線段OA有公共點(diǎn)?
(3)若直線DE與直線OA相交于點(diǎn)F,將△OEF沿DE向上折疊,設(shè)折疊后△OEF與△AOB重疊部分面積為S,請(qǐng)直接寫(xiě)出S與t的函數(shù)關(guān)系式,并寫(xiě)出t為何值時(shí),折疊面積最大,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•恩施州)如圖所示,在直角坐標(biāo)系中放置一個(gè)邊長(zhǎng)為1的正方形ABCD,將正方形ABCD沿x軸的正方向無(wú)滑動(dòng)的在x軸上滾動(dòng),當(dāng)點(diǎn)A離開(kāi)原點(diǎn)后第一次落在x軸上時(shí),點(diǎn)A運(yùn)動(dòng)的路徑線與x軸圍成的面積為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案