【題目】如圖,已知在ABCD中,E,F(xiàn)是對(duì)角線(xiàn)BD上的兩點(diǎn),則以下條件不能判斷四邊形AECF為平行四邊形的是(
A.BE=DF
B.AF⊥BD,CE⊥BD
C.∠BAE=∠DCF
D.AF=CE

【答案】D
【解析】解:如圖,連接AC與BD相交于O, 在ABCD中,OA=OC,OB=OD,
要使四邊形AECF為平行四邊形,只需證明得到OE=OF即可;
A、若BE=DF,則OB﹣BE=OD﹣DF,即OE=OF,故本選項(xiàng)錯(cuò)誤;
B、若AF⊥BD,CE⊥BD,則可以利用“角角邊”證明△ADF和△CBE全等,從而得到DF=BE,然后同A,故本選項(xiàng)錯(cuò)誤;
C、∠BAE=∠DCF能夠利用“角角邊”證明△ABE和△CDF全等,從而得到DF=BE,然后同A,故本選項(xiàng)錯(cuò)誤;
D、AF=CE無(wú)法證明得到OE=OF,故本選項(xiàng)正確.
故選D.

【考點(diǎn)精析】根據(jù)題目的已知條件,利用平行四邊形的判定與性質(zhì)的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握若一直線(xiàn)過(guò)平行四邊形兩對(duì)角線(xiàn)的交點(diǎn),則這條直線(xiàn)被一組對(duì)邊截下的線(xiàn)段以對(duì)角線(xiàn)的交點(diǎn)為中點(diǎn),并且這兩條直線(xiàn)二等分此平行四邊形的面積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知實(shí)數(shù)x、y、z滿(mǎn)足x2+y2+z2=4,則(2x﹣y)2+(2y﹣z)2+(2z﹣x)2的最大值是( 。
A.12
B.20
C.28
D.36

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某職業(yè)高中機(jī)電班共有學(xué)生42人,其中男生人數(shù)比女生人數(shù)的2倍少3人.

(1)該班男生和女生各有多少人?

(2)某工廠(chǎng)決定到該班招錄30名學(xué)生,經(jīng)測(cè)試,該班男、女生每天能加工的零件數(shù)分別為50個(gè)和45個(gè),為保證他們每天加工的零件總數(shù)不少于1460個(gè),那么至少要招錄多少名男學(xué)生?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形的邊長(zhǎng)為2,建立合適的直角坐標(biāo)系,寫(xiě)出各個(gè)頂點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知O為直線(xiàn)AD上一點(diǎn),射線(xiàn)OC,射線(xiàn)OB,∠AOC與∠AOB互補(bǔ),OM,ON分別為∠AOC,∠AOB的平分線(xiàn),若∠MON=40°.

(1)∠COD與∠AOB相等嗎?請(qǐng)說(shuō)明理由;
(2)試求∠AOC與∠AOB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知x﹣y=7,xy=2,則x2+y2的值為( 。

A.53
B.45
C.47
D.51

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)O是線(xiàn)段AB和線(xiàn)段CD的中點(diǎn).

(1)求證:△AOD≌△BOC;

(2)求證:AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是邊長(zhǎng)為a的正方形,點(diǎn)G、E分別是邊AB、BC的中點(diǎn),AEF=90°,且EF交正方形外角的平方線(xiàn)CF于點(diǎn)F.

(1)證明:AGE≌△ECF;

(2)求AEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正三角形ABC的周長(zhǎng)為12cm,DC∥AB,AD⊥CD于D.則CD=cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案