【題目】某班“數(shù)學興趣小組”對函數(shù),的圖象和性質進行了探究過程如下,請補充完成:
(1)函數(shù)的自變量的取值范圍是__________________;
(2)下表是與的幾組對應值.請直接寫出,的值:______________;________.
… | 0 | 2 | 3 | 4 | … | |||||||
… |
| -3 | 5 | 3 | … |
(3)如圖,在平面直角坐標系中,描出了以上表中各對對應值為坐標的點,根據(jù)描出的點,畫出該函數(shù)的圖象;
(4)通過觀察函數(shù)的圖象,小明發(fā)現(xiàn)該函數(shù)圖象與反比例函數(shù)的圖象形狀相同,是中心對稱圖形,且點和是一組對稱點,則其對稱中心的坐標為________.
(5)請寫出一條該函數(shù)的性質:___________________.
(6)當時,關于的方程有實數(shù)解,求的取值范圍.
【答案】(1);(2),;(3)詳見解析;(4);(5)當 時,y隨x的增大而減;(6).
【解析】
(1)根據(jù)分式的分母不能為0即可求出的取值范圍;
(2)令,即可求出m的值,令 ,即可求出n的值;
(3)將各個點用平滑的曲線連接即可得到函數(shù)的圖象;
(4)根據(jù)函數(shù)圖象即可得出答案;
(5)根據(jù)函數(shù)圖象可以得到函數(shù)的增減性;
(6)分別求出和時對應的函數(shù)值,然后分別代入方程中,求出兩個k的值,即可確定k的取值范圍.
解:(1)
∴函數(shù)的自變量的取值范圍是.
故答案為:.
(2)時,,
∴.
當時,則,解得,
∴,
故答案為:,;
(3)函數(shù)圖象如圖所示:
(4)由圖象可知,該函數(shù)的圖象關于點成中心對稱,
故答案為:;
(5)當 時,y隨x的增大而減小 .
(6)當時, ;當時,,
把,代入函數(shù)得,,解得,
把,代入函數(shù)得,解得,
∴關于的方程有實數(shù)解,的取值范圍是.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知拋物線()與軸交于、兩點(在的右側),與軸的正半軸交于點,對稱軸與軸交于點,作直線.
(1)求點、、的坐標:
(2)當以為圓心的圓與軸和直線都相切時,求拋物線的解析式:
(3)在(2)的條件下,如圖2.是軸負半軸上的一點,過點作軸的平行線,與直線交于點,與拋物線交于點,連接,將沿翻折,的對應點為.在圖2中探究:是否存在點,使得恰好落在軸上?若存在,請求出的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線過點,過定點 的直線:與拋物線交于、兩點,點在點的右側,過點作軸的垂線,垂足為.
(1)求拋物線的解析式;
(2)設點在x軸上運動,連接,作的垂直平分線與過點D作x軸的垂線交于點,判斷點是否在拋物線上,并證明你的判斷;
(3)若,設的中點為,拋物線上是否存在點,使得周長最小,若存在求出周長的最小值,若不存在說明理由;
(4)若,在拋物線上是否存在點,使得的面積為,若存在求出點的坐標,若不存在說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點是坐標原點,拋物線與軸相交于、兩點,與軸交于點,;
(1)如圖1,求拋物線的解析式;
(2)如圖2,點在第四象限的拋物線上,連接交軸于點,軸于點,的延長線交直線于點,求證:;
(3)如圖3,在(2)的條件下,點在上,連接、,,,求的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場第一次購進20件A商品,40件B商品,共用了1980元.脫銷后,在進價不變的情況下,第二次購進40件A商品,20件B商品,共用了1560元.商品A的售價為每件30元,商品B的售價為每件60元.
(1)求A,B兩種商品每件的進價分別是多少元?
(2)為了滿足市場需求,需購進A,B兩種商品共1000件,且A種商品的數(shù)量不少于B種商品數(shù)量的3倍,請你設計進貨方案,使這1000件商品售完后,商場獲利最大,并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠C=90°,AC=4,BC=3,如圖1,四邊形DEFG為△ABC的內接正方形,則正方形DEFG的邊長為_____.如圖2,若三角形ABC內有并排的n個全等的正方形,它們組成的矩形內接于△ABC,則正方形的邊長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】哈市某段地鐵工程由甲、乙兩工程隊合作天可完成.若單獨施工,甲工程隊比乙工程隊多用天.
求甲、乙兩工程隊單獨完成此項工程各需要多少天?
如果甲工程隊施工每天需付施工費萬元,乙工程隊施工每天需付施工費萬元,甲工程隊最多要單獨施工多少天后,再由甲.乙兩工程隊合作施工完成剩下的工程,才能使施工費不超過萬元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了美化環(huán)境,建設宜居成都,我市準備在一個廣場上種植甲、乙兩種花卉.經(jīng)市場調查,甲種花卉的種植費用(元)與種植面積之間的函數(shù)關系如圖所示,乙種花卉的種植費用為每平方米100元.
(1)直接寫出當和時,與的函數(shù)關系式;
(2)廣場上甲、乙兩種花卉的種植面積共,若甲種花卉的種植面積不少于,且不超過乙種花卉種植面積的2倍,那么應該怎樣分配甲、乙兩種花卉的種植面積才能使種植費用最少?最少總費用為多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com