【題目】如圖,在邊長(zhǎng)為4的正方形ABCD中,請(qǐng)畫出以A為一個(gè)頂點(diǎn),另外兩個(gè)頂點(diǎn)在正方形ABCD的邊上,且含邊長(zhǎng)為3的所有大小不同的等腰三角形.(要求:只要畫出示意圖,并在所畫等腰三角形長(zhǎng)為3的邊上標(biāo)注數(shù)字3)
【答案】
【解析】
試題分析:①以A為圓心,以3為半徑作弧,交AD、AB兩點(diǎn),連接即可;②連接AC,在AC上,以A為端點(diǎn),截取1.5個(gè)單位,過這個(gè)點(diǎn)作AC的垂線,交AD、AB兩點(diǎn),連接即可;③以A為端點(diǎn)在AB上截取3個(gè)單位,以截取的點(diǎn)為圓心,以3個(gè)單位為半徑畫弧,交BC一個(gè)點(diǎn),連接即可;④連接AC,在AC上,以C為端點(diǎn),截取1.5個(gè)單位,過這個(gè)點(diǎn)作AC的垂線,交BC、DC兩點(diǎn),然后連接A與這兩個(gè)點(diǎn)即可;⑤以A為端點(diǎn)在AB上截取3個(gè)單位,再作著個(gè)線段的垂直平分線交CD一點(diǎn),連接即可.
解:滿足條件的所有圖形如圖所示:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由二次函數(shù)y=﹣x2+2x可知( )
A.其圖象的開口向上
B.其圖象的對(duì)稱軸為x=1
C.其最大值為﹣1
D.其圖象的頂點(diǎn)坐標(biāo)為(﹣1,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y=(m≠0)的圖象交于A、B兩點(diǎn),與x軸交于C點(diǎn),點(diǎn)A的坐標(biāo)為(n,6),點(diǎn)C的坐標(biāo)為(﹣2,0),且tan∠ACO=2.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求點(diǎn)B的坐標(biāo);
(3)在x軸上求點(diǎn)E,使△ACE為直角三角形.(直接寫出點(diǎn)E的坐標(biāo))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BD是△ABC的一條角平分線.點(diǎn)O、E、F分別在BD、BC、AC上,且四邊形OECF是正方形.
(1)求證:點(diǎn)O在∠BAC的平分線上;
(2)若AC=5,BC=12,求OE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一個(gè)三角形的三條高的交點(diǎn)恰是三角形的一個(gè)頂點(diǎn),那么這個(gè)三角形是( )
A. 銳角三角形 B. 鈍角三角形 C. 直角三角形 D. 不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】推理填空:如圖:
①若∠1=∠2,
則 ∥ (內(nèi)錯(cuò)角相等,兩直線平行);
若∠DAB+∠ABC=180°,
則 ∥ (同旁內(nèi)角互補(bǔ),兩直線平行);
②當(dāng) ∥ 時(shí),
∠C+∠ABC=180°(兩直線平行,同旁內(nèi)角互補(bǔ));
③當(dāng) ∥ 時(shí),
∠3=∠C (兩直線平行,同位角相等).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)等腰三角形的兩邊長(zhǎng)分別為2和5,則它的周長(zhǎng)為( )
A. 7 B. 9 C. 12 D. 9或12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠DAB+∠D=180°,AC平分∠DAB,且∠CAD=25°,∠B=95°
(1)求∠DCA的度數(shù);
(2)求∠DCE的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com