【題目】 一艘觀光游船從港口A以北偏東60°的方向出港觀光,航行80海里至C處時發(fā)生了側(cè)翻沉船事故,立即發(fā)出了求救信號,一艘在港口正東方向的海警船接到求救信號,測得事故船在它的北偏東37°方向,馬上以40海里每小時的速度前往救援,求海警船到大事故船C處所需的大約時間.(溫馨提示:sin53°≈0.8,cos53°≈0.6)

【答案】

【解析】

試題過點C作CDAB交AB延長線于D.先解RtACD得出CD=AC=40海里,再解RtCBD中,得出BC=≈50,然后根據(jù)時間=路程÷速度即可求出海警船到大事故船C處所需的時間.

試題解析:

解:如圖,過點C作CDAB交AB延長線于D.

在RtACD中,∵∠ADC=90°,CAD=30°,AC=80海里,

CD=AC=40海里.

在RtCBD中,∵∠CDB=90°,CBD=90°﹣37°=53°,

BC==50(海里),

海警船到大事故船C處所需的時間大約為:50÷40=(小時).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y1x2+bx+c與直線y2=﹣2x+m相交于A(﹣2n)、B2,﹣3)兩點.

1)求這條拋物線的解析式;

2)若點D為拋物線的頂點,求三角形ABD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)交于、,與軸、軸分別交于點.

1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;

2)求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一家水果店以每千克2元的價格購進(jìn)某種水果若干千克,然后以每千克4元的價格出售,每天可售出100千克,通過調(diào)查發(fā)現(xiàn),這種水果每千克的售價每降低1元,每天可多售出200千克.

1)若將這種水果每千克的售價降低元,則每天銷售量是多少千克?(結(jié)果用含的代數(shù)式表示)

2)若想每天盈利300元,且保證每天至少售出260千克,那么水果店需將每千克的售價降低多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司銷售一種產(chǎn)品,經(jīng)分析發(fā)現(xiàn)月銷量y(萬件)于月份x(月)的關(guān)系如下表所示,每件產(chǎn)品的利潤z(元)與x月份(月)滿足關(guān)系式z=-x+201x12,且x為整數(shù))

x

1

2

3

4

5

6

7

8

9

10

11

12

y

27

30

33

36

39

42

45

48

46

44

42

40

1)請你根據(jù)表格分別求出1x8,9 x12x為整數(shù))時,銷售量y(萬件)與月份x(月)的關(guān)系式;

2)求當(dāng)x為何值時,月利潤w(萬元)有最大值,最大值為多少?

3)求該公司月利潤不少于576萬元的月份是哪幾個月?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O的圓心在RtABC的斜邊AB上,且O分別與邊AC、BC相切于D、E兩點,已知AC3,BC4,則O的半徑r_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中, AB=AC=10,線段BC軸上,BC=12,點B的坐標(biāo)為(-3,0),線段AB軸于點E,過AADBCD,動點P從原點出發(fā),以每秒3個單位的速度沿軸向右運動,設(shè)運動的時間為秒.

1)當(dāng)BPE是等腰三角形時,求的值;

2)若點P運動的同時,ABCB為位似中心向右放大,且點C向右運動的速度為每秒2個單位,ABC放大的同時高AD也隨之放大,當(dāng)以EP為直徑的圓與動線段AD所在直線相切時,求的值和此時點C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,E,F分別是AB,DC上的點,且,連接DE,BF,AF.

1)求證:四邊形DEBF是平行四邊形;

2)若AF平分,求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊三角形內(nèi)接于,點上兩點,且,若,則圖中陰影部分的面積為_____

查看答案和解析>>

同步練習(xí)冊答案