【題目】如圖,是一垂直于水平面的建筑物,某同學(xué)從建筑物底端出發(fā),先沿水平方向向右行走米到達(dá)點(diǎn)再經(jīng)過(guò)段坡度(或坡比)坡長(zhǎng)為米的斜坡到達(dá)點(diǎn)然后再沿水平方向向右行走米到達(dá)點(diǎn)均在同一平面內(nèi)).在處測(cè)得建筑物頂端的仰角為求建筑物的高度. (參考數(shù)據(jù):)

【答案】建筑物AB的高度約為21.7

【解析】

BMEDED的延長(zhǎng)線(xiàn)于MCNDMN.首先解直角三角形RtCDN,求出CNDN,再根據(jù),構(gòu)建方程即可解決問(wèn)題.

BMEDED的延長(zhǎng)線(xiàn)于MCNDMN

RtCDN中,

,設(shè)CN4k,DN3k,

CD10,

(3k)2(4k)2100,

k2,

CN8,DN6,

∵四邊形BMNC是矩形,

BMCN8,BCMN20,EMMNDNDE66

RtAEM中,tan24°,

AB217

答:建筑物AB的高度約為217米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】酒令是中國(guó)民間風(fēng)俗之一.白居易曾詩(shī)曰:“花時(shí)同醉破春愁,醉折花枝當(dāng)酒籌”飲酒行令,是中國(guó)人在飲酒時(shí)助興的一種特有方式,不僅要以酒助興,往往還伴之以賦詩(shī)填詞、猜迷形拳之舉,最早誕生于西周,完備于隋唐,“虎棒雞蟲(chóng)令”是其中一種:“二人相對(duì),以筷子相聲,同時(shí)或喊虎、喊棒、喊雞、喊蟲(chóng),以棒打虎、虎吃雞、雞吃蟲(chóng)、蟲(chóng)嗑棒論勝負(fù),負(fù)者飲.若棒興雞、或蟲(chóng)興虎同時(shí)出現(xiàn)(解釋?zhuān)喝舭襞c雞,虎與蟲(chóng)同時(shí)喊出)或兩人喊出同一物,則不分勝負(fù),繼續(xù)喊”.依據(jù)上述規(guī)則,張三和李四同時(shí)隨機(jī)地喊出其中一物,兩人只喊一次.

1)求張三喊出“虎”取勝的概率;

2)用列表法或畫(huà)樹(shù)狀圖法,求李四取勝的概率;

3)直接寫(xiě)出兩人能分出勝負(fù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,,點(diǎn)是射線(xiàn)上的動(dòng)點(diǎn),連接,將沿著翻折得到,設(shè)

1)如圖1,當(dāng)點(diǎn)上時(shí),求的值.

2)如圖2,連接,當(dāng)時(shí),求的面積.

3)在點(diǎn)的運(yùn)動(dòng)過(guò)程中,當(dāng)是等腰三角形時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)問(wèn)題發(fā)現(xiàn)

如圖1,在RtABCRtCDE中,∠ACB=DCE=90°,∠CAB=CDE=45°,點(diǎn)D是線(xiàn)段AB上一動(dòng)點(diǎn),連接BE.

填空: 的值為 ;②∠DBE的度數(shù)為 .

(2)類(lèi)比探究

如圖2,在RtABCRtCDE中,∠ACB=DCE=90°,∠CAB=CDE=60°,點(diǎn)D是線(xiàn)段AB上一動(dòng)點(diǎn),連接BE.請(qǐng)判斷的值及∠DBE的度數(shù),并說(shuō)明理由.

(3)拓展延伸

如面3,在(2)的條件下,將點(diǎn)D改為直線(xiàn)AB上一動(dòng)點(diǎn),其余條件不變,取線(xiàn)段DE的中點(diǎn)M,連接BMCM,若AC=2,則當(dāng)△CBM是直角三角形時(shí),線(xiàn)段BE的長(zhǎng)是多少?請(qǐng)直接寫(xiě)出答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們定義:如圖1,在中,把繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,把繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,連接.當(dāng)時(shí),我們稱(chēng)的“旋補(bǔ)三角形”,上的中線(xiàn)叫做的“旋補(bǔ)中線(xiàn)”.

(特例感知)

1)在圖2,圖3中,的“旋補(bǔ)三角形”,的“旋補(bǔ)中線(xiàn)”.

①如圖2,當(dāng)為等邊三角形,且時(shí),則長(zhǎng)為

②如圖3,當(dāng),且時(shí),則長(zhǎng)為

(猜想論證)

2)在圖1中,當(dāng)為任意三角形時(shí),猜想的數(shù)量關(guān)系,并給予證明.(如果你沒(méi)有找到證明思路,可以考慮延長(zhǎng)或延長(zhǎng),……)

(拓展應(yīng)用)

3)如圖4,在四邊形中,,,,以為邊在四邊形內(nèi)部作等邊,連接,.若的“旋補(bǔ)三角形”,請(qǐng)直接寫(xiě)出的“旋補(bǔ)中線(xiàn)”長(zhǎng)及四邊形的邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在扇形AOB中,∠AOB=90°,半徑OA=4.將扇形AOB沿過(guò)點(diǎn)B的直線(xiàn)折疊,點(diǎn)O恰好落在弧AB上點(diǎn)C處,折痕交OA于點(diǎn)D,則圖中陰影部分的面積為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】連接正八邊形的三個(gè)頂點(diǎn),得到如圖所示的圖形,下列說(shuō)法錯(cuò)誤的是(

A.四邊形與四邊形的面積相等

B.連接,則分別平分

C.整個(gè)圖形是軸對(duì)稱(chēng)圖形,但不是中心對(duì)稱(chēng)圖形

D.是等邊三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形是矩形,,將沿直線(xiàn)翻折,使點(diǎn)落在點(diǎn)處,軸于點(diǎn),若,則點(diǎn)的坐標(biāo)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在每個(gè)小正方形邊長(zhǎng)為1的網(wǎng)格中,點(diǎn)均在格點(diǎn)上,交于點(diǎn)

(Ⅰ)的值為_____________;

(Ⅱ)若點(diǎn)在線(xiàn)段上,當(dāng)取得最小值時(shí),請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中用無(wú)刻度的直尺,畫(huà)出點(diǎn),并簡(jiǎn)要說(shuō)明點(diǎn)的位置是如何找到的(不要求證明)_____________

查看答案和解析>>

同步練習(xí)冊(cè)答案