【題目】如圖1,一超市從一樓到二樓有一自動扶梯,圖2是側(cè)面示意圖.已知自動扶梯AB的坡度為12.4,AB的長度是13米,MN是二樓樓頂,MNPQ,CMN上處在自動扶梯頂端B點正上方的一點,BCMN,在自動扶梯底端A處測得C點的仰角為37°,則二樓的層高BC約為(精確到0.1米,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)(  )

1 2

A. 4 B. 3.6 C. 2.2 D. 4.6

【答案】A

【解析】

延長CBPQ于點D,根據(jù)坡度的定義即可求得BD的長,然后在直角CDA中利用三角函數(shù)即可求得CD的長,則BC即可得到.

延長CBPQ于點D.

MNPQ,BCMN,

BCPQ.

∵自動扶梯AB的坡度為1:2.4,

設(shè)BD=5k(),AD=12k(),AB=13k().

AB=13(),

k=1,

BD=5(),AD=12().

RtCDA,

CD=ADtanCAD≈12×0.75=9(),

BC=95=4().

故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A是雙曲線y=(x>0)上的一動點,過A作AC⊥y軸,垂足為點C,作AC的垂直平分線交雙曲線于點B,交x軸于點D.當點A在雙曲線上從左到右運動時,對四邊形ABCD的面積的變化情況,小明列舉了四種可能:

①逐漸變;

②由大變小再由小變大;

③由小變大再由大變。

④不變.

你認為正確的是_____.(填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】P為拋物線為常數(shù),)上任意一點,將拋物線繞頂點G逆時針旋轉(zhuǎn)90°后得到的圖象與軸交于AB兩點(點A在點B的上方),點Q為點P旋轉(zhuǎn)后的對應(yīng)點.

1)拋物線的對稱軸是直線________,當m=2時,點P的橫坐標為4時,點Q的坐標為_________;

2)設(shè)點Q請你用含m,的代數(shù)式表示________

3)如圖,點Q在第一象限,點D軸的正半軸上,點COD的中點,QO平分∠AQC,當AQ=2QC,QD=時,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某批乒乓球的質(zhì)量檢驗結(jié)果如下:

抽取的乒乓球數(shù)n

200

500

1000

1500

2000

優(yōu)等品頻數(shù)m

188

471

946

1426

1898

優(yōu)等品頻率

0.940

0.942

0.946

0.951

0.949

(1)畫出這批乒乓球優(yōu)等品頻率的折線統(tǒng)計圖;

(2)這批乒乓球優(yōu)等品的概率的估計值是多少?

(3)從這批乒乓球中選擇5個黃球、13個黑球、22個紅球,它們除顏色外都相同,將它們放入一個不透明的袋中.

求從袋中摸出一個球是黃球的概率;

現(xiàn)從袋中取出若干個黑球,并放入相同數(shù)量的黃球,攪拌均勻后使從袋中摸出一個是黃球的概率不小于, 問至少取出了多少個黑球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù)y=(k0)的圖象經(jīng)過點A(﹣2,m),過點AABx軸于點B,且△AOB的面積為4.

(Ⅰ)求km的值;

(Ⅱ)設(shè)C(x,y)是該反比例函數(shù)圖象上一點,當1x4時,求函數(shù)值y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】材料一:把一個自然數(shù)的個位數(shù)字截去,再用余下的數(shù)減去個位數(shù)的2倍,如果差是7的倍數(shù),則原數(shù)能被7整除.如果差太大不易看出是否7的倍數(shù),可重復(fù)上述「截尾、倍大、相減、驗差」的過程,直到能清楚判斷為止.例如,判斷392是否7的倍數(shù)的過程如下:,,所以,3927的倍數(shù);又例如判斷8638是否7的倍數(shù)的過程如下:,,所以,86387的倍數(shù).

材料二:若一個四位自然數(shù)n滿足千位與個位相同,百位與十位相同,我們稱這個數(shù)為對稱數(shù).將對稱數(shù)n的前兩位與后兩位交換位置得到一個新的對稱數(shù),記,例如

(1)請用材料一的方法判斷6909367能不能被7整除;

(2)mp對稱數(shù)”,其中,a,b,c均為整數(shù)),若m能被7整除,且,求p

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓O的直徑,過點O作弦AD的垂線交半圓O于點E,交AC于點C,使BED=C.

(1)判斷直線AC與圓O的位置關(guān)系,并證明你的結(jié)論;

(2)若AC=8,cosBED=,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=x2+mxx軸的負半軸于點A.點By軸正半軸上一點,點A關(guān)于點B的對稱點A′恰好落在拋物線上.過點A′x軸的平行線交拋物線于另一點C.若點A′的橫坐標為1,則A′C的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把n個邊長為1的正方形拼接成一排,求得tanBA1C=1,tanBA2C=,tanBA3C=,計算tanBA4C=_____,…按此規(guī)律,寫出tanBAnC=_____(用含n的代數(shù)式表示).

查看答案和解析>>

同步練習(xí)冊答案