【題目】一塊材料的形狀是銳角三角形ABC,BC=120mm,4D=80mm, .把它加工成正方形零件如圖1,使正方形的一邊在BC,其余兩個(gè)頂點(diǎn)分別在AB,AC.

(1)求證:;

(2)求這個(gè)正方形零件的邊長(zhǎng);

【答案】1)見解析;(2)正方形零件的邊長(zhǎng)為48mm

【解析】

1)根據(jù)正方形性質(zhì)證∠AEF=B ,∠AFE=C即可;(2)由,故,解方程可得.

(1)證明:∵四邊形EGFH為正方形,

BC// EF,

∴∠AEF=B,∠AFE=C

;

(2)解:設(shè)正方形零件的邊長(zhǎng)為xmm,則KD=EF=xmm, AK= (80-x) mm,

EF// BC,

,

ADBC,

解得x=48.

答:正方形零件的邊長(zhǎng)為48mm.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有甲、乙、丙三人組成的籃球訓(xùn)練小組,他們?nèi)酥g進(jìn)行互相傳球練習(xí),籃球從一個(gè)人手中隨機(jī)傳到另外一個(gè)人手中計(jì)作傳球一次,共連續(xù)傳球三次.

1)若開始時(shí)籃球在甲手中,則經(jīng)過第一次傳球后,籃球落在丙的手中的概率是  ;

2)若開始時(shí)籃球在甲手中,求經(jīng)過連續(xù)三次傳球后,籃球傳到乙的手中的概率.(請(qǐng)用畫樹狀圖或列表等方法求解)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與x軸交于A(﹣1,0),B3,0)兩點(diǎn),與y軸交于點(diǎn)C03.

1)求此拋物線所對(duì)應(yīng)函數(shù)的表達(dá)式;

2)若M 是拋物線對(duì)稱軸上一個(gè)動(dòng)點(diǎn),求當(dāng) MA+MC 的值最小時(shí) M 點(diǎn)坐標(biāo);

3)若拋物線的頂點(diǎn)為D,在其對(duì)稱軸右側(cè)的拋物線上是否存在點(diǎn)P,使得PCD為等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班學(xué)生做用頻率估計(jì)概率的實(shí)驗(yàn)時(shí),給出的某一結(jié)果出現(xiàn)的頻率折線圖,則符合這一結(jié)果的實(shí)驗(yàn)可能是( 。

A.拋一枚硬幣,出現(xiàn)正面朝上

B.從標(biāo)有1,2,3,45,6的六張卡片中任抽一張,出現(xiàn)偶數(shù)

C.從一個(gè)裝有6個(gè)紅球和3個(gè)黑球的袋子中任取一球,取到的是黑球

D.一副去掉大小王的撲克牌洗勻后,從中任抽一張牌的花色是紅桃

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市茶葉專賣店銷售某品牌茶葉,其進(jìn)價(jià)為每千克 240 元,按每千克 400 元出售,平均每周可售出 200 千克,后來經(jīng)過市場(chǎng)調(diào)查發(fā)現(xiàn),單價(jià)每降低 10 元,則平均每周的銷售量可增加 40 千克,若該專賣店銷售這種品牌茶葉要想平均每周獲利 41600 元,請(qǐng)回答:

1)每千克茶葉應(yīng)降價(jià)多少元?

2)在平均每周獲利不變的情況下,為盡可能讓利于顧客,贏得市場(chǎng),該店應(yīng)按原售價(jià)的 幾折出售?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB4,BC,ECD邊上一點(diǎn),將BCE沿BE折疊,使得C落到矩形內(nèi)點(diǎn)F的位置,連接AF,若tanBAF,則CE_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在四邊形中,,,,垂直平分.點(diǎn)從點(diǎn)出發(fā),沿方向勻速運(yùn)動(dòng),速度為;同時(shí),點(diǎn)從點(diǎn)出發(fā),沿方向勻速運(yùn)動(dòng),速度為;當(dāng)一個(gè)點(diǎn)停止運(yùn)動(dòng),另一個(gè)點(diǎn)也停止運(yùn)動(dòng).過點(diǎn),交于點(diǎn),過點(diǎn),分別交,于點(diǎn).連接,.設(shè)運(yùn)動(dòng)時(shí)間為,解答下列問題:

(1)當(dāng)為何值時(shí),點(diǎn)的平分線上?

(2)設(shè)四邊形的面積為,求的函數(shù)關(guān)系式.

(3)連接,,在運(yùn)動(dòng)過程中,是否存在某一時(shí)刻,使?若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+3a≠0)經(jīng)過A30),B4,1)兩點(diǎn),且與y軸交于點(diǎn)C

1)求拋物線y=ax2+bx+3a≠0)的函數(shù)關(guān)系式及點(diǎn)C的坐標(biāo);

2)如圖(1),連接AB,在題(1)中的拋物線上是否存在點(diǎn)P,使PAB是以AB為直角邊的直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;

3)如圖(2),連接ACE為線段AC上任意一點(diǎn)(不與A、C重合)經(jīng)過A、EO三點(diǎn)的圓交直線AB于點(diǎn)F,當(dāng)OEF的面積取得最小值時(shí),求點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了測(cè)量重慶有名的觀景點(diǎn)南山大金鷹的大致高度,小南同學(xué)使用的無人機(jī)進(jìn)行觀察,當(dāng)無人機(jī)與大金鷹側(cè)面在同一平面,且距離水平面垂直高度GF100米時(shí),小南調(diào)整攝像頭方向,當(dāng)俯角為45°時(shí),恰好可以拍攝到金鷹的頭頂A點(diǎn);當(dāng)俯角為63°時(shí),恰好可以拍攝到金鷹底座點(diǎn)E.已知大金鷹是雄踞在一人造石臺(tái)上,石臺(tái)側(cè)面CE長(zhǎng)12.5米,坡度為10.75,石臺(tái)上方BC長(zhǎng)10米,頭部A點(diǎn)位于BC中點(diǎn)正上方.則金鷹自身高度約(  )米.(結(jié)果保留一位小數(shù),sin63°≈0.89,cos63°≈0.45tan63°≈1.96

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案