【題目】如圖,AC是□ABCD的一條對(duì)角線,過AC中點(diǎn)O的直線分別交AD,BC于點(diǎn)E,F.
(1)求證:△AOE≌△COF;
(2)若EF與AC垂直,試判斷四邊形AFCE的形狀,并說明理由.
【答案】(1)詳見解析;(2)四邊形AFCE是菱形,理由詳見解析.
【解析】
(1)由平行四邊形的性質(zhì)得出AD∥BC,得出∠EAO=∠FCO,利用對(duì)頂角相等∠AOE=∠COF,O是AC的中點(diǎn),OA=OC,所以由ASA即可得出結(jié)論;(2)四邊形AFCE是菱形,先證明四邊形AFCE是平行四邊形,再由對(duì)角線互相垂直的平行四邊形是菱形即可得出四邊形AFCE是菱形.
(1)∵四邊形ABCD是平行四邊形,
∴AD∥BC,
∴∠EAO=∠FCO,
∵O是CA的中點(diǎn)
∴OA=OC,
又∵∠AOE=∠COF(對(duì)頂角相等),
∴△AOE≌△COF(ASA);
(2)四邊形AFCE是菱形,理由如下:
∵△AOE≌△COF,
∴AE=CF,
∵AE∥CF,
∴四邊形AFCE是平行四邊形(一組對(duì)邊平行且相等的四邊形是平行四邊形),
∵EF⊥AC,
∴四邊形AFCE是菱形(對(duì)角線互相垂直的平行四邊形是菱形).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的頂點(diǎn)都在方格線的交點(diǎn)(格點(diǎn))上.
(1)將△ABC繞C點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)90°得到△A′B′C′,請(qǐng)?jiān)趫D中畫出△A′B′C′.
(2)將△ABC向上平移1個(gè)單位,再向右平移5個(gè)單位得到△A″B″C″,請(qǐng)?jiān)趫D中畫出△A″B″C″.
(3)若將△ABC繞原點(diǎn)O旋轉(zhuǎn)180°,A的對(duì)應(yīng)點(diǎn)A1的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知任意一個(gè)三角形的三個(gè)內(nèi)角的和是180°,如圖1,在ABC中,∠ABC的角平分線BO與∠ACB的角平分線CO的交點(diǎn)為O.
(1)若∠A=70°,求∠BOC的度數(shù);
(2)若∠A=α,求∠BOC的度數(shù);
(3)如圖2,若BO、CO分別是∠ABC、∠ACB的三等分線,也就是∠OBC=∠ABC,∠OCB=∠ACB,∠A=α,求∠BOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:□ABCD的兩邊AB,AD的長是關(guān)于x的方程x2-mx+-=0的兩個(gè)實(shí)數(shù)根.
(1)當(dāng)m為何值時(shí),四邊形ABCD是菱形?求出這時(shí)菱形的邊長;
(2)若AB的長為2,那么□ABCD的周長是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某射手在同一條件下進(jìn)行射擊,結(jié)果如下表所示:
(1)計(jì)算并填寫表中擊中靶心的頻率;(結(jié)果保留三位小數(shù))
(2)這個(gè)射手射擊一次,擊中靶心的概率估計(jì)值是多少?(結(jié)果保留兩位小數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
在數(shù)學(xué)課上,老師請(qǐng)同學(xué)思考如下問題:如圖①,我們把一個(gè)四邊形的四邊中點(diǎn)依次連接起來得到的四邊形是平行四邊形嗎?
小敏在思考問題,有如下思路:連接.
結(jié)合小敏的思路作答.
(1)若只改變圖①中四邊形的形狀(如圖②),則四邊形還是平行四邊形嗎?說明理由;
(參考小敏思考問題方法)
(2)如圖②,在(1)的條件下,若連接.
①當(dāng)與滿足什么條件時(shí),四邊形是矩形,寫出結(jié)論并證明;
②當(dāng)與滿足____時(shí),四邊形是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了了解學(xué)生最喜歡的一種球類運(yùn)動(dòng),以便合理安排活動(dòng)場地,在全校至少喜歡一種球類(乒乓球、羽毛球、排球、籃球、足球)運(yùn)動(dòng)的1500名學(xué)生中,隨機(jī)抽取了若干名學(xué)生進(jìn)行調(diào)查(每人只能在這五種球類運(yùn)動(dòng)中選擇一種).調(diào)查結(jié)果統(tǒng)計(jì)如下:
球類名稱 | 人數(shù) |
乒乓球 | 42 |
羽毛球 | a |
排球 | 15 |
籃球 | 33 |
足球 | b |
解答下列問題:
(1)這次抽樣調(diào)查中的樣本是________;
(2)統(tǒng)計(jì)表中,a=________,b=________;
(3)試估計(jì)上述1500名學(xué)生中最喜歡乒乓球運(yùn)動(dòng)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校與圖書館在同一條筆直道路上,甲從學(xué)校去圖書館,乙從圖書館回學(xué)校,甲、乙兩人都勻速步行且同時(shí)出發(fā),乙先到達(dá)目的地.兩人之間的距離y(米)與時(shí)間t(分鐘)之間的函數(shù)關(guān)系如圖所示.
(1)根據(jù)圖象信息,當(dāng)t= 分鐘時(shí)甲乙兩人相遇,甲的速度為 米/分鐘,乙的速度為 米/分鐘;
(2)圖中點(diǎn)A的坐標(biāo)為 ;
(3)求線段AB所直線的函數(shù)表達(dá)式;
(4)在整個(gè)過程中,何時(shí)兩人相距400米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD是邊長為4的正方形,點(diǎn)E在邊AD所在的直線上,連接CE,以CE為邊,作正方形CEFG(點(diǎn)D,點(diǎn)F在直線CE的同側(cè)),連接BF,
圖1 圖2
(1)如圖1,當(dāng)點(diǎn)E與點(diǎn)A重合時(shí),則_____;
(2)如圖2,當(dāng)點(diǎn)E在線段AD上時(shí),,
①求點(diǎn)F到AD的距離;
②求BF的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com