【題目】(1)如圖,在四邊形ABCD中,AB∥DC,EBC的中點,若AE∠BAD的平分線,求證:AD=DC+AB,

(2)如圖,在四邊形ABCD中,AB∥DC,F(xiàn)DC延長線上一點,連接AF,EBC的中點,若AE∠BAF的平分線,求證:AB=AF+CF.

【答案】(1)證明見解析 (2)證明見解析.

【解析】

(1)延長AEDC的延長線于點F,證明△AEB≌△FEC,根據(jù)全等三角形的性質(zhì)得到AB=FC,根據(jù)等腰三角形的判定得到DF=AD,證明結(jié)論;

(2)延長AEDF的延長線于點G,利用同(1)相同的方法證明.

解:(1)延長AEDC的延長線于點F,

EBC的中點,

CE=BE,

ABDC,

∴∠BAE=F,

AEBFEC中,,

∴△AEB≌△FEC,

AB=FC,

AE是∠BAD的平分線,

∴∠BAE=EAD,

ABCD,

∴∠BAE=F,

∴∠EAD=F,

AD=DF,

AD=DF=DC+CF=DC+AB,

(2)如圖②,延長AEDF的延長線于點G,

EBC的中點,

CE=BE,

ABDC,

∴∠BAE=G,

AEBGEC中, ,

∴△AEB≌△GEC,

AB=GC,

AE是∠BAF的平分線,

∴∠BAG=FAG,

ABCD,

∴∠BAG=G,

∴∠FAG=G,

FA=FG,

AB=CG=AF+CF.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料: 小明在學習二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如:,善于思考的小明進行了以下探索:

設(shè)(其中均為整數(shù)),則有

.這樣小明就找到了一種把部分的式子化為平方式的方法.

請你仿照小明的方法探索并解決下列問題:

均為正整數(shù)時,若,用含m、n的式子分別表示,得   ,   ;

2)利用所探索的結(jié)論,找一組正整數(shù),填空:    (      )2;

3)若,且均為正整數(shù),求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,將△ABC紙片沿DE折疊,使點C落在四邊形ABDE內(nèi)點C的位置,

1)①若,則 ;

②若,則 ;

③探索 之間的數(shù)量關(guān)系,并說明理由;

2)直接按照所得結(jié)論,填空:

①如圖中,將△ABC紙片再沿FGMN折疊,使點AB分別落在△ABC內(nèi)點A、B的位置,則 ;

②如圖中,將四邊形ABCD按照上面方式折疊,則 ;

③若將n邊形也按照上面方式折疊,則 ;

3)如圖,將△ABC紙片沿DE折疊,使點落在△ABC上方點的位置, 探索、之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB兩地相距50千米,甲于某日下午1時騎自行車從A地出發(fā)駛往B地,乙也于同日下午騎摩托車從A地出發(fā)駛往B地,圖中PQR和線段MN,分別表示甲和乙所行駛的S與該日下午時間t之間的關(guān)系,試根據(jù)圖形回答:
1)甲出發(fā)幾小時,乙才開始出發(fā)?
2)乙行駛多少分鐘趕上甲,這時兩人離B地還有多少千米?
3)甲從下午2時到5時的速度是多少?
4)乙行駛的速度是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解下列方程組:

(1)

(2);

(3) .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一架長25米的梯子,斜靠在豎直的墻上,這時梯子底端離墻7米.

(1)此時梯子頂端離地面多少米?

(2)若梯子頂端下滑4米,那么梯子底端將向左滑動多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我國邊防局接到情報,近海處有一可疑船只正向公海方向航行,邊防部迅速派出快艇追趕如圖1,圖2分別表示兩船相對海岸的距離(海里)與追趕時間(分)之間的關(guān)系.

根據(jù)圖象回答問題:

(1)哪條線表示到海岸的距離與追趕時間之間的關(guān)系?

(2)哪個速度快?

(3)15分鐘內(nèi)能否追上?為什么?

(4)如果一直追下去,那么能否追上

(5)當逃離海岸12海里時,將無法對其進行檢查,照此速度,能否在逃入公海前將其攔截?為什么?

(6)對應(yīng)的兩個一次函數(shù)中,的實際意義各是什么?可疑船只與快艇的速度各是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD中,AE平分∠BAD,交BC于E,DE⊥AE,下列結(jié)論::①DE平分∠ADC;②E是BC的中點;③AD=2CD;④梯形ADCE的面積與△ABE的面積比是3:1,其中正確的結(jié)論的個數(shù)有( )

A.4
B.3
C.2
D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖(1),已知:在ABC中,∠BAC90°,ABAC,直線l經(jīng)過點A,BD⊥直線l,CE⊥直線l,垂足分別為點DE.證明:DEBD+CE

2)如圖(2),將(1)中的條件改為:在ABC中,ABAC,D、AE三點都在直線l上,且∠BDA=∠AEC=∠BACα,其中α為任意銳角或鈍角.請問結(jié)論DEBD+CE是否成立?如成立;請你給出證明;若不成立,請說明理由.

3)拓展與應(yīng)用:如圖(3),D、E是直線l上的兩動點(D、A、E三點互不重合),點F為∠BAC平分線上的一點,且ABFACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,求證:DFEF

查看答案和解析>>

同步練習冊答案