【題目】正方形中,點是上一點,過點作交射線于點,連結.
(1)已知點在線段上.
①若,求度數(shù);
②求證:.
(2)已知正方形邊長為,且,請直接寫出線段的長.
【答案】(1)①;②見解析;(2)的長為或
【解析】
(1) ①根據(jù)正方形性質,求出;根據(jù)等腰三角形性質,求出的度數(shù),即可求得.
②根據(jù)正方形對稱性得到;根據(jù)四邊形內角和證出;利用等角對等邊即可證出.
(2)分情況討論:①當點F在線段BC上時; ②當點F在線段CB延長線上時;根據(jù)正方形的對稱性,證出;再根據(jù)等腰三角形的性質,求出線段NC,BN;利用勾股定理,求出BE、BD,進而求出DE.
解:(1)①為正方形,
.
又,
.
②證明:正方形關于對稱,
,
.
又,
又
,
,
.
(2)①當點F在線段BC上時,過E作MN⊥BC,垂足為N,交AD于M,如圖1所示:
∴N是CF的中點,
∴BF=1,∴CF=1
又∵四邊形CDMN是矩形
∴為等腰直角三角形
∴
②當點F在線段CB延長線上時,如圖2所示:
過點E作MN⊥BC,垂足為N,交AD于M
∵正方形ABCD關于BD對稱
又∵
又
∴FC=3
∴
∴
∴ ,
綜上所述,的長為或
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是根據(jù)某市2014年至2018年工業(yè)生產(chǎn)總值繪制的折線統(tǒng)計圖,觀察統(tǒng)計圖獲得以下信息,其中判斷錯誤的是( )
A.2014年至2018年工業(yè)生產(chǎn)總值逐年增加
B.2018年的工業(yè)生產(chǎn)總值比前一年增加了億元
C.2016年與2017年每一年與前一年比,其增長額相同
D.2015年至2018年,每一年與前一年比,2018年的增長率最大
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知數(shù)軸上點與點之間的距的距離為個單位長度,點在原點的左側,到原點的距離為個單位長度,點在點的右側,點表示的數(shù)與點表示的數(shù)互為相反數(shù),動點從點出發(fā),以每秒個單位長度的速度向點移動,設移動時間為秒.
(1)點表示的數(shù)為 ,點表示的數(shù)為 ,點表示的數(shù)為 .
(2)用含的代數(shù)式分別表示點到點和點的距離: , .
(3)當點運動到點時,點從點出發(fā),以每秒個單位長度的速度向點運動,點到達點后,立即以同樣的速度返回點,在點開始運動后,當兩點之間的距離為個單位長度時,求此時點表示的數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),四邊形ABCD中,AB∥CD,∠ADC=90°,P從A點出發(fā),以每秒1個單位長度的速度,按A→B→C→D的順序在邊上勻速運動,設P點的運動時間為t秒,△PAD的面積為S,S關于t的函數(shù)圖象如圖(2)所示,當P運動到BC中點時,△PAD的面積為( )
A. 4B. 5C. 6D. 7
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明同學有一本零錢記賬本,上面記載著某一周初始零錢為100元,周一到周五的收支情況如下(記收入為+,單位:元):
+25,-15.5,-23,-17,+26
(1)這周末他可以支配的零錢為幾元?
(2)若他周六用了元購得2本書,周日他爸爸給了他10元買早飯,但他實際用了15元,恰好用完了所有的零錢,求的值。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人在直線跑道上同起點同終點同方向勻速跑步500米,先到終點的人原地體息.已知甲先出發(fā),在跑步過程中,甲、乙兩人的距離與乙出發(fā)的時間之間的關系如圖所示,給出的下結論:①,②,③,其中正確的是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以Rt△ABC的斜邊BC為一邊在△ABC的同側作正方形BCEF,設正方形的中心為O,連接AO,如果AB=3,AO=,那么AC的長等于( )
A. 7 B. 8 C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=8,AC=6.點D在邊AB上,AD=4.5.△ABC的角平分線AE交CD于點F.
(1)求證:△ACD∽△ABC;
(2)求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com