【題目】已知拋物線y=ax2+bx過(guò)點(diǎn)A(1,4)、B(﹣3,0),過(guò)點(diǎn)A作直線AC∥x軸,交拋物線于另一點(diǎn)C,在x軸上有一點(diǎn)D(4,0),連接CD.
(1)求拋物線的表達(dá)式;
(2)若在拋物線上存在點(diǎn)Q,使得CD平分∠ACQ,請(qǐng)求出點(diǎn)Q的坐標(biāo);
(3)在直線CD的下方的拋物線上取一點(diǎn)N,過(guò)點(diǎn)N作NG∥y軸交CD于點(diǎn)G,以NG為直徑畫(huà)圓在直線CD上截得弦GH,問(wèn)弦GH的最大值是多少?
(4)一動(dòng)點(diǎn)P從C點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿C﹣A﹣D運(yùn)動(dòng),在線段CD上還有一動(dòng)點(diǎn)M,問(wèn)是否存在某一時(shí)刻使PM+AM=4?若存在,請(qǐng)直接寫(xiě)出t的值;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)直線CE的表達(dá)式為y=﹣x﹣;(2)點(diǎn)Q的坐標(biāo)為(﹣,﹣);(3)弦GH的最大值;(4)存在,t的值為3或7
【解析】
(1)由點(diǎn)A、B的坐標(biāo),利用待定系數(shù)法即可求出拋物線的表達(dá)式;
(2)利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征求出點(diǎn)C的坐標(biāo),結(jié)合點(diǎn)A、D的坐標(biāo)可得出AC、AD的長(zhǎng),取點(diǎn)E(﹣1,0),連接CE交拋物線于點(diǎn)Q,則四邊形ACED為菱形,由點(diǎn)C、E的坐標(biāo),利用待定系數(shù)法可求出直線CE的表達(dá)式,聯(lián)立直線CE與拋物線表達(dá)式成方程組,通過(guò)解方程組即可求出點(diǎn)Q的坐標(biāo);
(3)由點(diǎn)C、D的坐標(biāo),利用待定系數(shù)法可求出直線CD的表達(dá)式,設(shè)點(diǎn)N的坐標(biāo)為(x,x2+3x),則點(diǎn)G的坐標(biāo)為(x,﹣x+2),進(jìn)而可得出NG=﹣x2﹣x+2,利用二次函數(shù)的性質(zhì)可求出NG的最大值,以NG為直徑畫(huà)⊙O′,取GH的中點(diǎn)F,連接O′F,則O′F⊥BC,通過(guò)解直角三角形可得出GH=NG,代入NG的最大值即可求出弦GH的最大值;
(4)取點(diǎn)E(﹣1,0),連接CE、AE,過(guò)點(diǎn)E作EP1⊥AC于點(diǎn)P1,交CD于點(diǎn)M1,過(guò)點(diǎn)E作EP2⊥AD于點(diǎn)P2,交CD于點(diǎn)M2,由AC∥x軸及點(diǎn)A的坐標(biāo)可得出EP1=4,由菱形的對(duì)稱(chēng)性可得出EP2=4,根據(jù)點(diǎn)C和點(diǎn)E的坐標(biāo)可得出CP1、DP2的長(zhǎng)度,再結(jié)合AC、AD的長(zhǎng)即可求出t的值,此題得解.
解:(1)∵拋物線y=ax2+bx過(guò)點(diǎn)A(1,4)、B(﹣3,0),
∴ ,解得:a=1,b=3,
∴拋物線的表達(dá)式為y=x2+3x.
(2)當(dāng)y=4時(shí),有x2+3x=4,
解得:x1=﹣4,x2=1,
∴點(diǎn)C的坐標(biāo)為(﹣4,4),
∴AC=1﹣(﹣4)=5.
∵A(1,4),D(4,0),
∴AD=5.
取點(diǎn)E(﹣1,0),連接CE交拋物線于點(diǎn)Q,如圖1所示.
∵AC=5,DE=4﹣(﹣1)=5,AC∥DE,
∴四邊形ACED為平行四邊形,
∵AC=AD,
∴四邊形ACED為菱形,
∴CD平分∠ACQ.
設(shè)直線CE的表達(dá)式為y=mx+n(m≠0),
將C(﹣4,4)、E(﹣1,0)代入y=mx+n,得:
,解得:,
∴直線CE的表達(dá)式為y=﹣x﹣.
聯(lián)立直線CE與拋物線表達(dá)式成方程組,得: ,
解得: ,
∴點(diǎn)Q的坐標(biāo)為(﹣,﹣).
(3)設(shè)直線CD的表達(dá)式為y=kx+c(k≠0),
將C(﹣4,4)、D(4,0)代入y=kx+c,得:
,解得: ,
∴直線CD的表達(dá)式為y=﹣x+2.
設(shè)點(diǎn)N的坐標(biāo)為(x,x2+3x),則點(diǎn)G的坐標(biāo)為(x,﹣x+2),
∴NG=﹣x+2﹣(x2+3x)=﹣x2﹣x+2=﹣(x+)2+,
∵﹣1<0,
∴當(dāng)x=﹣時(shí),NG取最大值,最大值為.
以NG為直徑畫(huà)⊙O′,取GH的中點(diǎn)F,連接O′F,則O′F⊥BC,如圖2所示.
∵直線CD的表達(dá)式為y=﹣x+2,NG∥y軸,O′F⊥BC,
∴tan∠GO′F==,
∴,
∴GH=2GF= O′G=NG,
∴弦GH的最大值為×=.
(4)取點(diǎn)E(﹣1,0),連接CE、AE,過(guò)點(diǎn)E作EP1⊥AC于點(diǎn)P1,交CD于點(diǎn)M1,過(guò)點(diǎn)E作EP2⊥AD于點(diǎn)P2,交CD于點(diǎn)M2,如圖3所示.
∵四邊形ACED為菱形,
∴點(diǎn)A、E關(guān)于CD對(duì)稱(chēng),
∴AM=EM.
∵AC∥x軸,點(diǎn)A的坐標(biāo)為(1,4),
∴EP1=4.
由菱形的對(duì)稱(chēng)性可知EP2=4.
∵點(diǎn)E的坐標(biāo)為(﹣1,0),
∴點(diǎn)P1的坐標(biāo)為(﹣1,4),
∴CP1=DP2=﹣1﹣(﹣4)=3,
又∵AC=AD=5,
∴t的值為3或7.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如下圖,已知直線分別與軸,軸交于,兩點(diǎn),直線:交于點(diǎn).
(1)求,兩點(diǎn)的坐標(biāo);
(2)如圖1,點(diǎn)E是線段OB的中點(diǎn),連結(jié)AE,點(diǎn)F是射線OG上一點(diǎn), 當(dāng),且時(shí),求的長(zhǎng);
(3)如圖2,若,過(guò)點(diǎn)作∥,交軸于點(diǎn),此時(shí)在軸上是否存在點(diǎn),使,若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料:小明遇到這樣一個(gè)問(wèn)題:如圖1,在四邊形ABCD中,∠B=∠C=90°,E是BC的中點(diǎn),AE、DE分別平分∠DAB、∠CDA.求證:AD=AB+CD.
小明經(jīng)探究發(fā)現(xiàn),在AD上截取AF=AB,連接EF(如圖2),從而可證△AEF≌△AEB,使問(wèn)題得到解決.
(1)請(qǐng)你按照小明的探究思路,完成他的證明過(guò)程;
參考小明思考問(wèn)題的方法,解決下面的問(wèn)題:
(2)如圖3,△ABC是等腰直角三角形,∠A=90°,點(diǎn)D為邊AC上任意一點(diǎn)(不與點(diǎn)A、B重合),以BD為腰作等腰直角△BDE,∠DBE=90°.過(guò)點(diǎn)E作BE⊥EG交BA的延長(zhǎng)線于點(diǎn)G,過(guò)點(diǎn)D作DF⊥BD,交BC于點(diǎn)F,連接FG,猜想EG、DF、FG之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店按進(jìn)貨價(jià)每件6元購(gòu)進(jìn)一批貨,零售價(jià)為8元時(shí),可以賣(mài)出100件,如果零售價(jià)高于8元,那么一件也賣(mài)不出去,零售價(jià)從8元每降低0.1元,可以多賣(mài)出10件.設(shè)零售價(jià)定為x元(6≤x≤8).
(1)這時(shí)比零售為8元可以多賣(mài)出幾件?
(2)這時(shí)可以賣(mài)出多少件?
(3)這時(shí)所獲利潤(rùn)y(元)與零售價(jià)x(元)的關(guān)系式怎樣?
(4)為零售價(jià)定為多少時(shí),所獲利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形OABC是等腰梯形,OA∥BC,A的坐標(biāo)(4,0),B的坐標(biāo)(3,2),點(diǎn)M從O點(diǎn)以每秒3個(gè)單位的速度向終點(diǎn)A運(yùn)動(dòng);同時(shí)點(diǎn)N從B點(diǎn)出發(fā)以每秒1個(gè)單位的速度向終點(diǎn)C運(yùn)動(dòng)(M到達(dá)點(diǎn)A后停止,點(diǎn)N繼續(xù)運(yùn)動(dòng)到C點(diǎn)停止),過(guò)點(diǎn)N作NP⊥OA于P點(diǎn),連接AC交NP于Q,連接MQ,如動(dòng)點(diǎn)N運(yùn)動(dòng)時(shí)間為t秒.
(1)求直線AC的解析式;
(2)當(dāng)t取何值時(shí)?△AMQ的面積最大,并求此時(shí)△AMQ面積的最大值;
(3)是否存在t的值,使△PQM與△PQA相似?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(7分)某中學(xué)1000名學(xué)生參加了”環(huán)保知識(shí)競(jìng)賽“,為了了解本次競(jìng)賽成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分取整數(shù),滿(mǎn)分為100分)作為樣本進(jìn)行統(tǒng)計(jì),并制作了如圖頻數(shù)分布表和頻數(shù)分布直方圖(不完整且局部污損,其中“■”表示被污損的數(shù)據(jù)).請(qǐng)解答下列問(wèn)題:
成績(jī)分組 | 頻數(shù) | 頻率 |
50≤x<60 | 8 | 0.16 |
60≤x<70 | 12 | a |
70≤x<80 | ■ | 0.5 |
80≤x<90 | 3 | 0.06 |
90≤x≤100 | b | c |
合計(jì) | ■ | 1 |
(1)寫(xiě)出a,b,c的值;
(2)請(qǐng)估計(jì)這1000名學(xué)生中有多少人的競(jìng)賽成績(jī)不低于70分;
(3)在選取的樣本中,從競(jìng)賽成績(jī)是80分以上(含80分)的同學(xué)中隨機(jī)抽取兩名同學(xué)參加環(huán)保知識(shí)宣傳活動(dòng),求所抽取的2名同學(xué)來(lái)自同一組的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】合肥享有“中國(guó)淡水龍蝦之都”的美稱(chēng).甲乙兩家小龍蝦美食店,平時(shí)以同樣的價(jià)格出售品質(zhì)相同的小龍蝦,“龍蝦節(jié)”期間,甲乙兩家店都讓利酬賓,在人數(shù)不超過(guò)20人的前提下,付款金額y甲,y乙(單位元)與人數(shù)之間的函數(shù)關(guān)系如圖所示.
(1)直接寫(xiě)出y甲,y乙關(guān)于x的函數(shù)關(guān)系式.
(2)小王公司想在“龍蝦節(jié)”期間組織團(tuán)建,在甲乙兩家店就餐,如何選擇甲乙兩家美食店吃小龍蝦更省錢(qián)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,給出四個(gè)等式:①AE=AD;②AB=AC;③OB=OC;④∠B=∠C.現(xiàn)選取其中的三個(gè),以?xún)蓚(gè)作為已知條件,另一個(gè)作為結(jié)論.
(1)請(qǐng)你寫(xiě)出一個(gè)正確的命題,并加以證明;
(2)請(qǐng)你至少寫(xiě)出三個(gè)這樣的正確命題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】.在一次課題設(shè)計(jì)活動(dòng)中,小明對(duì)修建一座87m長(zhǎng)的水庫(kù)大壩提出了以下方案;大壩的橫截面為等腰梯形,如圖,∥,壩高10m,迎水坡面的坡度,老師看后,從力學(xué)的角度對(duì)此方案提出了建議,小明決定在原方案的基礎(chǔ)上,將迎水坡面的坡度進(jìn)行修改,修改后的迎水坡面的坡度。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com