【題目】如圖,⊙O的半徑OD⊥弦AB于點C,連結AO并延長交⊙O于點E,連結EC.若AB=8,CD=2,則EC的長為( )
A. 2 B. 8 C. 2 D. 2
【答案】C
【解析】連結BE,設⊙O的半徑為R,由OD⊥AB,根據垂徑定理得AC=BC=AB=4,在Rt△AOC中,OA=R,OC=R-CD=R-2,根據勾股定理得到(R-2)2+42=R2,解得R=5,則OC=3,由于OC為△ABE的中位線,則BE=2OC=6,再根據圓周角定理得到∠ABE=90°,然后在Rt△BCE中利用勾股定理可計算出CE.
解:連結BE,設⊙O的半徑為R,如圖所示,
∵OD⊥AB,
∴AC=BC=AB=×8=4,
在Rt△AOC中,OA=R,OC=R-CD=R-2,
∵OC2+AC2=OA2,
∴(R-2)2+42=R2,解得R=5,
∴OC=5-2=3,
∴BE=2OC=6,
∵AE為直徑,
∴∠ABE=90°,
在Rt△BCE中, .
考點: 1.垂徑定理;2.勾股定理;3.三角形中位線定理;4.圓周角定理.
“點睛”本題考查的是垂徑定理及勾股定理,根據題意作出輔助線,構造出直角三角形是解答此題的關鍵.
科目:初中數學 來源: 題型:
【題目】在一次漢字聽寫大賽中,10名學生得分情況如表:
人數 | 3 | 4 | 2 | 1 |
分數 | 80 | 85 | 90 | 9595 |
那么這10名學生所得分數的中位數和眾數分別是( )
A.85和82.5
B.85.5和85
C.85和85
D.85.5和80
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線經過點A(-1,0)、B(3,0)、C(0,3)三點。
(1)求拋物線的解析式。
(2)點M是線段BC上的點(不與B,C重合),過M作MN∥y軸交拋物線于N若點M的橫坐標為m,請用m的代數式表示MN的長。
(3)在(2)的條件下,連接NB、NC,是否存在m,使△BNC的面積最大?若存在,求m的值;若不存在,說明理由。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知a,b,c為△ABC的三邊長,且a4﹣b4+b2c2﹣a2c2=0,則△ABC的形狀是( )
A. 等腰三角形 B. 直角三角形 C. 等腰直角三角形 D. 等腰三角形或直角三角形
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點O是等邊△ABC內一點,∠AOB=110°,∠BOC=α,將△BOC繞點C按順時針方向旋轉60°得△ADC,連接OD.
(1)求證:△COD是等邊三角形;
(2)當α=150°時,試判斷△AOD的形狀,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學組織七年級同學到汶川地震災區(qū)遺址參觀。原計劃租用25座客車若干輛,但有5人沒
有座位;后來改租40座的客車,結果少用了4輛,且各輛恰好坐滿.
問:該校七年級有同學多少名?原計劃租用25座客車多少輛?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com