【題目】如圖直線 a,b,c 表示三條相互交叉而建的公路,現(xiàn)在要建立一個貨物中轉站,要求它到三條公路的距離相等,則可供選擇的地址有(

A. 1 B. 2 C. 3 D. 4

【答案】D

【解析】

本題要分類討論的思想,從內(nèi)角平分線和外角平分線兩方面思考,首先由三角形內(nèi)角平分線的交點到三角形三邊的距離相等,可得三角形內(nèi)角平分線的交點滿足條件;再者利用角平分線的性質,可證得三角形兩條外角平分線的交點到其三邊的距離也相等,這樣的點有3個,可得可供選擇的地址有4個.

∵△ABC內(nèi)角平分線的交點到三角形三邊的距離相等,

∴△ABC內(nèi)角平分線的交點滿足條件;

如圖:點P是△ABC兩條外角平分線的交點,

過點PPEAB,PDBC,PFAC,

PE=PF,PF=PD,

PE=PF=PD,

∴點P到△ABC的三邊的距離相等,

∴△ABC兩條外角平分線的交點到其三邊的距離也相等,滿足這條件的點有3個;

綜上,到三條公路的距離相等的點有4個,

∴可供選擇的地址有4個.

故選:D.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】探究題:

1三條直線相交,最少有__________個交點,最多有__________個交點,分別畫出圖形并數(shù)出圖形中的對頂角和鄰補角的對數(shù);

2四條直線相交最少有__________個交點,最多有__________個交點分別畫出圖形,并數(shù)出圖形中的對頂角和鄰補角的對數(shù);

3依次類推,n條直線相交最少有__________個交點,最多有__________個交點對頂角有__________,鄰補角有__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】按照如下步驟計算:62÷( + ).
(1)計算:( + )÷62
(2)根據(jù)兩個算式的關系,直接寫出62÷( + )的結果.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在三角板ABC中,∠ACB=90°,∠A=30°,AC=6,將三角板ABC繞點C逆時針旋轉,當起始位置時的點B恰好落在邊A1B1上時,A1B的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學開展“陽光體育一小時”活動,按學校實際情況,決定開設A:踢毽子;B:籃球;C:跳繩;D:乒乓球四種運動項目.為了解學生最喜歡哪一種運動項目,隨機抽取了一部分學生進行調查,并將調查結果繪制成如下兩個統(tǒng)計圖.請結合圖中的信息解答下列問題:
(1)本次共調查了名學生;
(2)在扇形統(tǒng)計圖中,“B”所在扇形的圓心角是度;
(3)將條形統(tǒng)計圖補充完整;
(4)若該中學有1200名學生,喜歡籃球運動的學生約有名.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線y=﹣x+3與x軸、y軸分別交于A,B兩點,拋物線y=﹣x2+bx+c經(jīng)過A,B兩點,點P在線段OA上,從點A以1個單位/秒的速度勻速運動;同時,點Q在線段AB上,從點A出發(fā),向點B以 個單位/秒的速度勻速運動,連接PQ,設運動時間為t秒.

(1)求拋物線的解析式;
(2)當t為何值時,△APQ為直角三角形;
(3)過點P作PE∥y軸,交AB于點E,過點Q作QF∥y軸,交拋物線于點F,連接EF,當EF∥PQ時,求點F的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABC是等邊三角形,點D、E分別在AC、BC上,且CD=BE,

(1)求證:ABE≌△BCD;

(2)求出AFB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB,CD被直線EF所截,點G,H為它們的交點,∠AGE與它的同位角相等,HP平分∠GHD.AGH∶∠BGH27,試求∠CHG和∠PHD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列三行數(shù),并完成后面的問題:

-2,4,-8,16,……

1,-2,4,-8,……

0,-3,3,-9,……

(1)思考第①行數(shù)的規(guī)律,寫出第個數(shù)字是________;

(2)設第②行第個數(shù)為第③行第個數(shù)為請直接寫出之間的關系;

(3)分別表示第①、②、③行數(shù)的第2019個數(shù)字,的值。

查看答案和解析>>

同步練習冊答案