【題目】如圖,等腰三角形底邊的長為,面積是,腰的垂直平分線交于點,若為邊上的中點,為線段上一動點,則的周長的最小值為( )
A.B.C.D.
【答案】D
【解析】
連接AD,由于△ABC是等腰三角形,點D是BC邊的中點,故AD⊥BC,再根據(jù)三角形的面積公式求出AD的長,再根據(jù)EF是線段AB的垂直平分線可知,點B關(guān)于直線EF的對稱點為點A,故AD的長為BM+MD的最小值,由此即可得出結(jié)論.
連接AD,
∵△ABC是等腰三角形,點D是BC邊的中點,
∴AD⊥BC,
∴S△ABC=BCAD=×4×AD=12,解得AD=6cm,
∵EF是線段AB的垂直平分線,
∴點B關(guān)于直線EF的對稱點為點A,
∴AD的長為BM+MD的最小值,
∴△BDM的周長最短=(BM+MD)+BD=AD+BC=6+×4=6+=8cm.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△EBD中,EB=ED,點C在BD上,CE=CD,BE⊥CE,A是CE延長線上一點,EA=EC.
(1)求∠EBC的度數(shù);
(2)求證△ABC為等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,點D在BC邊上,點E在AC的延長線上,DE=DA.
(1)求證:∠BAD=∠EDC;
(2)作出點E關(guān)于直線BC的對稱點M,連接DM、AM,猜想DM與AM的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,將任意兩點P(x1,y1)與Q(x2,y2)之間的“直距”定義為:DPQ=|x1﹣x2|+|y1﹣y2|.
例如:點M(1,﹣2),點N(3,﹣5),則DMN=|1﹣3|+|﹣2﹣(﹣5)|=5.已知點A(1,0)、點B(﹣1,4).
(1)則DAO= ,DBO= ;
(2)如果直線AB上存在點C,使得DCO為2,請你求出點C的坐標(biāo);
(3)如果⊙B的半徑為3,點E為⊙B上一點,請你直接寫出DEO的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:學(xué)習(xí)了分式運算后,老師布置了這樣一道計算題:,甲、乙兩位同學(xué)的解答過程分別如下:
甲同學(xué):
①
②
③
④
乙同學(xué):
①
②
③
④
老師發(fā)現(xiàn)這兩位同學(xué)的解答過程都有錯誤.
請你從甲、乙兩位同學(xué)中,選擇一位同學(xué)的解答過程,幫助他分析錯因,并加以改正.
(1)我選擇________同學(xué)的解答過程進(jìn)行分析. (填“甲”或“乙”)
(2)該同學(xué)的解答從第________步開始出現(xiàn)錯誤(填序號),錯誤的原因是________;
(3)請寫出正確解答過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們常見的炒菜鍋和鍋蓋都是拋物線面,經(jīng)過鍋心和蓋心的縱斷面是兩端拋物線組合而成的封閉圖形,不妨簡稱為“鍋線”,鍋口直徑為,鍋深,鍋蓋高(鍋口直徑與鍋蓋直徑視為相同),建立直角坐標(biāo)系如圖①所示(圖②是備用圖),如果把鍋縱斷面的拋物線記為,把鍋蓋縱斷面的拋物線記為.
求和的解析式;
如果炒菜鍋時的水位高度是,求此時水面的直徑;
如果將一個底面直徑為,高度為的圓柱形器皿放入炒菜鍋內(nèi)蒸食物,鍋蓋能否正常蓋上?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥CD,CE、BE的交點為E,現(xiàn)作如下操作:
第一次操作,分別作∠ABE和∠DCE的平分線,交點為E1,
第二次操作,分別作∠ABE1和∠DCE1的平分線,交點為E2,
第三次操作,分別作∠ABE2和∠DCE2的平分線,交點為E3,…,
第n次操作,分別作∠ABEn﹣1和∠DCEn﹣1的平分線,交點為En.
若∠En=1度,那∠BEC等于 度
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com