【題目】如圖1,ABCD的對角線AC,BD相交于點(diǎn)O,且AEBDBEAC,OECD

1)求證:四邊形ABCD是菱形;

2)如圖2,若∠ADC60°,AD4,求AE的長.

【答案】1)詳見解析;(22

【解析】

1)根據(jù)平行四邊形的性質(zhì)和菱形的判定證明即可;

2)由菱形的性質(zhì)可得ADCD4,ACBD,BODO,AOCO,∠ADO30°,可求AO2DO AO2 BO,由平行四邊形的性質(zhì)可求AE的長.

證明:(1)∵AEBDBEAC

∴四邊形AEBO是平行四邊形,

∵四邊形ABCD是平行四邊形,

DCAB

OECD,

OEAB

∴平行四邊形AEBO是矩形,

∴∠BOA90°

ACBD

∴平行四邊形ABCD是菱形;

2)∵四邊形ABCD是菱形,

ADCD4ACBD,BODO,AOCO,∠ADO30°,

AO2DOAO2BO,

∴四邊形OBEA是平行四邊形,

AEOB2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,正方形ABCD的頂點(diǎn)B,Cx軸的正半軸上,反比例函數(shù)在第一象限的圖象經(jīng)過頂點(diǎn)A(m,m+3)和CD上的點(diǎn)E,且OB-CE=1。直線lO、E兩點(diǎn),則tanEOC的值為( )

A. B. 5 C. D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在RtABCRtABD中,∠ACB90°,∠ABD90°,ABBD,BC4,(點(diǎn)A、D分別在直線BC的上下兩側(cè)),點(diǎn)GRtABD的重心,射線BG交邊AD于點(diǎn)E,射線BC交邊AD于點(diǎn)F

1)求證:∠CAF=∠CBE;

2)當(dāng)點(diǎn)F在邊BC上,AC1時(shí),求BF的長;

3)若△BGC是以BG為腰的等腰三角形,試求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABO的直角頂點(diǎn)O在原點(diǎn),AOy軸上,BOx軸上,且AO=4,BO=3,△ABO繞著各頂點(diǎn)向x軸正方向連續(xù)翻滾(始終保持一條邊在x軸上)得到多個(gè)三角形,請問第2020個(gè)三角形的直角頂點(diǎn)坐標(biāo)為_________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c經(jīng)過點(diǎn)(1,2),(5,3),則下列說法正確的是(  )

①拋物線與y軸有交點(diǎn)

②若拋物線經(jīng)過點(diǎn)(2,2),則拋物線的開口向上

③拋物線的對稱軸不可能是x=3

④若拋物線的對稱軸是x=4,則拋物線與x軸有交點(diǎn)

A.①②③④B.①②③C.①③④D.②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,RtABC的頂點(diǎn),B分別在y軸、x軸上,OA2,OB1,斜邊ACx軸.若反比例函數(shù)(k0,x0)的圖象經(jīng)過AC的中點(diǎn)D,則k的值為( )

A.8B.5C.6D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠BAC=60°,AD平分∠BAC交邊BC于點(diǎn)D,分別過DDEAC交邊AB于點(diǎn)EDFAB交邊AC于點(diǎn)F

(1)如圖1,試判斷四邊形AEDF的形狀,并說明理由;

(2)如圖2,若AD=4,點(diǎn)H,G分別在線段AE,AF上,且EH=AG=3,連接EGAD于點(diǎn)M,連接FHEG于點(diǎn)N

(i)ENEG的值;

(ii)將線段DM繞點(diǎn)D順時(shí)針旋轉(zhuǎn)60°得到線段DM,求證:H,F,M三點(diǎn)在同一條直線上

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以點(diǎn)O為位似中心,將五邊形ABCDE放大后得到五邊形ABCDE,已知OA10cmOA20cm,則五邊形ABCDE的周長與五邊形ABCDE的周長比是( 。

A.12B.21C.13D.31

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在圓O中,AB為直徑,EF為弦,連接AF,BE交于點(diǎn)P,且EF2PFAF

1)求證:F為弧BE的中點(diǎn);

2)若tan∠BEF,求cos∠ABE的值.

查看答案和解析>>

同步練習(xí)冊答案