【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到,其中點(diǎn)A′與點(diǎn)A是對(duì)應(yīng)點(diǎn),點(diǎn)B′與點(diǎn)B是對(duì)應(yīng)點(diǎn),連接AB′,且A、B′、A′在同一條直線上,則AA′的長(zhǎng)為

【答案】6
【解析】解:∵在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2, ∴∠CAB=30°,故AB=4,
∵△A′B′C由△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到,其中點(diǎn)A′與點(diǎn)A是對(duì)應(yīng)點(diǎn),點(diǎn)B′與點(diǎn)B是對(duì)應(yīng)點(diǎn),連接AB′,且A、B′、A′在同一條直線上,
∴AB=A′B′=4,AC=A′C,
∴∠CAA′=∠A′=30°,
∴∠ACB′=∠B′AC=30°,
∴AB′=B′C=2,
∴AA′=2+4=6,
故答案為6.
利用直角三角形的性質(zhì)得出AB=4,再利用旋轉(zhuǎn)的性質(zhì)以及三角形外角的性質(zhì)得出AB′=2,進(jìn)而得出答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,矩形ABCD中,AB=2,BC=5,BP=1,∠MPN=90°,將∠MPN繞點(diǎn)P從PB處開(kāi)始按順時(shí)針?lè)较蛐D(zhuǎn),PM交邊AB(或AD)于點(diǎn)E,PN交邊AD(或CD)于點(diǎn)F,當(dāng)PN旋轉(zhuǎn)至PC處時(shí),∠MPN的旋轉(zhuǎn)隨即停止.
(1)特殊情形:如圖②,發(fā)現(xiàn)當(dāng)PM過(guò)點(diǎn)A時(shí),PN也恰巧過(guò)點(diǎn)D,此時(shí),△ABP△PCD(填“≌”或“~”);
(2)類比探究:如圖③,在旋轉(zhuǎn)過(guò)程中, 的值是否為定值?若是,請(qǐng)求出該定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與y軸正半軸相交,其頂點(diǎn)坐標(biāo)為( ,1),下列結(jié)論:①ac<0;②a+b=0;③4ac﹣b2=4a;④a+b+c<0.其中正確結(jié)論的個(gè)數(shù)是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=ax2+bx+c的頂點(diǎn)為D(﹣1,2),與x軸的一個(gè)交點(diǎn)A在點(diǎn)(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則以下結(jié)論:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有兩個(gè)相等的實(shí)數(shù)根.其中正確的結(jié)論有(填序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,AD平分∠BAC交⊙O于點(diǎn)D,過(guò)點(diǎn)D作DE∥BC交AC的延長(zhǎng)線于點(diǎn)E.
(1)試判斷DE與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若∠E=60°,⊙O的半徑為5,求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,一枚質(zhì)地均勻的正四面體骰子,它有四個(gè)面并分別標(biāo)有數(shù)字1,2,3,4. 如圖2,正方形ABCD頂點(diǎn)處各有一個(gè)圈.跳圈游戲的規(guī)則為:游戲者每擲一次骰子,骰子著地一面上的數(shù)字是幾,就沿正方形的邊順時(shí)針?lè)较蜻B續(xù)跳幾個(gè)邊長(zhǎng).
如:若從圈A起跳,第一次擲得3,就順時(shí)針連續(xù)跳3個(gè)邊長(zhǎng),落到圈D;若第二次擲得2,就從D開(kāi)始順時(shí)針連續(xù)跳2個(gè)邊長(zhǎng),落到圈B;…
設(shè)游戲者從圈A起跳.

(1)嘉嘉隨機(jī)擲一次骰子,求落回到圈A的概率P1;
(2)淇淇隨機(jī)擲兩次骰子,用列表法求最后落回到圈A的概率P2 , 并指出她與嘉嘉落回到圈A的可能性一樣嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象,下列結(jié)論: ①二次三項(xiàng)式ax2+bx+c的最大值為4;
②4a+2b+c<0;
③一元二次方程ax2+bx+c=1的兩根之和為﹣1;
④使y≤3成立的x的取值范圍是x≥0.
其中正確的個(gè)數(shù)有(

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=4,BC=2,E是AB的中點(diǎn),直線l平行于直線EC,且直線l與直線EC之間的距離為2,點(diǎn)F在矩形ABCD邊上,將矩形ABCD沿直線EF折疊,使點(diǎn)A恰好落在直線l上,則DF的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD及等邊△ABE.已知∠BAC=30°,EF⊥AB,垂足為F,連接DF.

(1)試說(shuō)明AC=EF;
(2)求證:四邊形ADFE是平行四邊形.

查看答案和解析>>

同步練習(xí)冊(cè)答案