【題目】拋物線與軸交于點(diǎn),,與軸交于點(diǎn),頂點(diǎn)為,直線與軸交于點(diǎn).
(Ⅰ)求頂點(diǎn)的坐標(biāo);
(Ⅱ)如圖,設(shè)點(diǎn)為線段上一動(dòng)點(diǎn)(點(diǎn)不與點(diǎn)、重合),過(guò)點(diǎn)作軸的垂線與拋物線交于點(diǎn).求的面積最大值;
(Ⅲ)點(diǎn)在線段上,當(dāng)時(shí),求點(diǎn)的坐標(biāo)(直接寫出結(jié)果,不必寫解答過(guò)程).
【答案】(Ⅰ)(1,-4);(Ⅱ)1;(Ⅲ)(,-)
【解析】
(Ⅰ)利用待定系數(shù)法把,,代入二次函數(shù)中,即可算出b、c的值,得到函數(shù)解析式,再用配方法求得頂點(diǎn)的坐標(biāo);
(Ⅱ)先根據(jù)B、D兩點(diǎn)坐標(biāo)利用待定系數(shù)法確定直線BD的解析式,設(shè)點(diǎn)P的坐標(biāo)為(m,n),再根據(jù),得出關(guān)于點(diǎn)P的橫坐標(biāo)m的函數(shù)關(guān)系式,利用配方法即可得出結(jié)論;
(Ⅲ)根據(jù)B、C、D三點(diǎn)的坐標(biāo),利用兩點(diǎn)間的距離公式分別求出CD、BD、CB的平方,再利用勾股定理的逆定理確定BCD為直角三角形,求出tan∠CDB的值,設(shè)點(diǎn)Q的坐標(biāo)為(n,2n-6),再根據(jù)已知條件得出tan∠QCE=3,從而列出n的方程,解方程即可確定Q點(diǎn)坐標(biāo).
(Ⅰ)∵拋物線y=x2-bx+c的圖象經(jīng)過(guò)點(diǎn)A(-1,0),B(3,0),
∴;
解得:
∴拋物線的解析式為y=x2-2x-3=(x-1)2-4;
∴頂點(diǎn)的坐標(biāo)為:(1,-4);
(Ⅱ)設(shè)直線BD解析式為y=kx+b,
∵,D(1,-4).
∴;
解得:
∴直線BD解析式為y=2x-6,
設(shè)點(diǎn)P的坐標(biāo)為(m,n),
∵點(diǎn)為線段上一動(dòng)點(diǎn)(點(diǎn)不與點(diǎn)、重合),
∴點(diǎn)P的坐標(biāo)為:(m,2m-6)(1);
∵點(diǎn)是過(guò)點(diǎn)作軸的垂線與拋物線的交點(diǎn).
∴點(diǎn)F的坐標(biāo)為:(m,m2-2m-3);
∵點(diǎn)P在點(diǎn)F的上方,
∴PF=(2m-6)-(m2-2m-3)=-m2+4m-3
設(shè)直線PF交x軸于點(diǎn)G,過(guò)點(diǎn)D作DH⊥PF于H,
∵
=-m2+4m-3=-.
∴是關(guān)于m的二次函數(shù);
∵a=-1,
∴當(dāng)m=2時(shí),的面積有最大值,最大值為1.
(Ⅲ)點(diǎn)Q的坐標(biāo)為(,-)
連接BC、CD,由點(diǎn)、、(1,-4);
根據(jù)兩點(diǎn)間的距離公式可得:,,
;
∴
∴∠DCB=90°
在Rt中,tan∠CDB=
∵∠CDB=∠QCE,∴tan∠QCE =3,
設(shè)點(diǎn)Q的坐標(biāo)為(n,2n-6)
過(guò)點(diǎn)Q作QM⊥CE于M,
在Rt中,tan∠QCE==3,∴n=
∴點(diǎn)Q的坐標(biāo)為(,-)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在正方形ABCD中,AB=3,E是邊BC上一個(gè)動(dòng)點(diǎn)(點(diǎn)E不與點(diǎn)B,點(diǎn)C重合),連接AE,點(diǎn)H是BC延長(zhǎng)線上一點(diǎn).過(guò)點(diǎn)B作BF⊥AE,交AE于點(diǎn)G,交DC于點(diǎn)F.
(1)求證:AE=BF;
(2)過(guò)點(diǎn)E作EM⊥AE,交∠DCH的平分線于點(diǎn)M,連接FM,判斷四邊形BFME的形狀,并說(shuō)明理由;
(3)在(2)的條件下,∠EMC的正弦值為,求四邊形AGFD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】岳陽(yáng)市整治農(nóng)村“空心房”新模式,獲評(píng)全國(guó)改革開(kāi)放40年地方改革創(chuàng)新40案例.據(jù)了解,我市某地區(qū)對(duì)轄區(qū)內(nèi)“空心房”進(jìn)行整治,騰退土地1200畝用于復(fù)耕和改造,其中復(fù)耕土地面積比改造土地面積多600畝.
(1)求復(fù)耕土地和改造土地面積各為多少畝?
(2)該地區(qū)對(duì)需改造的土地進(jìn)行合理規(guī)劃,因地制宜建設(shè)若干花卉園和休閑小廣場(chǎng),要求休閑小廣場(chǎng)總面積不超過(guò)花卉園總面積的,求休閑小廣場(chǎng)總面積最多為多少畝?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰中,,AD是的角平分線,且,以點(diǎn)A為圓心,AD長(zhǎng)為半徑畫弧EF,交AB于點(diǎn)E,交AC于點(diǎn)F.
(1)求由弧EF及線段FC、CB、BE圍成圖形(圖中陰影部分)的面積;
(2)將陰影部分剪掉,余下扇形AEF,將扇形AEF圍成一個(gè)圓錐的側(cè)面,AE與AF正好重合,圓錐側(cè)面無(wú)重疊,求這個(gè)圓錐的高h.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知AB是⊙O的直徑,弦CD與AB相交,∠BCD=28°.
(I)如圖①,求∠ABD的大。
(Ⅱ)如圖②,過(guò)點(diǎn)D作⊙O的切線,與AB的延長(zhǎng)線交于點(diǎn)P,若DP∥AC,求∠OCD的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=ax2+bx﹣1與x軸的交點(diǎn)為A(﹣1,0),B(2,0),且與y軸交于C點(diǎn).
(1)求該拋物線的表達(dá)式;
(2)點(diǎn)C關(guān)于x軸的對(duì)稱點(diǎn)為C1,M是線段BC1上的一個(gè)動(dòng)點(diǎn)(不與B、C1重合),ME⊥x軸,MF⊥y軸,垂足分別為E、F,當(dāng)點(diǎn)M在什么位置時(shí),矩形MFOE的面積最大?說(shuō)明理由.
(3)已知點(diǎn)P是直線y=x+1上的動(dòng)點(diǎn),點(diǎn)Q為拋物線上的動(dòng)點(diǎn),當(dāng)以C、C1、P、Q為頂點(diǎn)的四邊形為平行四邊形時(shí),求出相應(yīng)的點(diǎn)P和點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一次函數(shù)y=﹣2x+8的圖象與坐標(biāo)軸交于A,B兩點(diǎn),并與反比例函數(shù)的圖象相切于點(diǎn)C.
(1)切點(diǎn)C的坐標(biāo)是 ;
(2)若點(diǎn)M為線段BC的中點(diǎn),將一次函數(shù)y=﹣2x+8的圖象向左平移m(m>0)個(gè)單位后,點(diǎn)C和點(diǎn)M平移后的對(duì)應(yīng)點(diǎn)同時(shí)落在另一個(gè)反比例函數(shù)的圖象上時(shí),求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解不等式組,請(qǐng)結(jié)合題意填空,完成本題的解答.
(Ⅰ)解不等式①,得_________;
(Ⅱ)解不等式②,得_________;
(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來(lái):
(Ⅳ)原不等式組的解集為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形的頂點(diǎn)坐標(biāo)為,點(diǎn)在邊上從點(diǎn)運(yùn)動(dòng)到點(diǎn),以為邊作正方形,連,在點(diǎn)運(yùn)動(dòng)過(guò)程中,請(qǐng)?zhí)骄恳韵聠?wèn)題:
(1)的面積是否改變,如果不變,求出該定值;如果改變,請(qǐng)說(shuō)明理由;
(2)若為等腰三角形,求此時(shí)正方形的邊長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com