【題目】已知函數(shù)y=ax2+bx+c圖象如圖所示,則下列結(jié)論中正確的個(gè)數(shù)( )
① abc<0;② a-b+c<0;③ a+b+c>0;④ 2c =3b
A.1B.2C.3D.4
【答案】C
【解析】
首先根據(jù)拋物線的開口方向可知,再利用拋物線與軸交點(diǎn)位于其正半軸可知,進(jìn)一步結(jié)合對稱軸的性質(zhì)即可得出,由此可以得出①正確;然后結(jié)合圖形將代入解析式即可判斷②錯(cuò)誤;接著根據(jù),進(jìn)一步得出,據(jù)此結(jié)合即可得出③正確;最后分別將、用表示出來進(jìn)一步判斷即可.
∵拋物線開口向下,
∴,
又∵拋物線與軸交點(diǎn)位于其正半軸,
∴,
∵拋物線對稱軸為:,
∴,
∴,
∴,①正確;
由圖可知,當(dāng)時(shí),,
∴,②錯(cuò)誤;
∵,,,
∴,
∴,③正確;
∵,
∴,
∵,
∴,
∴,④正確;
綜上所述,共有3個(gè)正確,
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC,以AC為邊在△ABC外作等腰△ACD,其中AC=AD
(1) 如圖1,若AB為邊在△ABC外作△ABE,AB=AE,∠DAC=∠EAB=60°,求∠BFC的度數(shù)
(2) 如圖2,∠ABC=α,∠ACD=β,BC=6,BD=8
① 若α=30°,β=60°,AB的長為
② 若改變?chǔ)、β的大小,但α+β?0°,求△ABC的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了落實(shí)黨的“精準(zhǔn)扶貧”政策,A、B兩城決定向C、D兩鄉(xiāng)運(yùn)送肥料以支持農(nóng)村生產(chǎn),已知A、B兩城共有肥料500噸,其中A城肥料比B城少100噸,從A城往C、D兩鄉(xiāng)運(yùn)肥料的費(fèi)用分別為20元/噸和25元/噸;從B城往C、D兩鄉(xiāng)運(yùn)肥料的費(fèi)用分別為15元/噸和24元/噸.現(xiàn)C鄉(xiāng)需要肥料240噸,D鄉(xiāng)需要肥料260噸.
(1)A城和B城各有多少噸肥料?
(2)設(shè)從A城運(yùn)往C鄉(xiāng)肥料x噸,總運(yùn)費(fèi)為y元,求出最少總運(yùn)費(fèi).
(3)由于更換車型,使A城運(yùn)往C鄉(xiāng)的運(yùn)費(fèi)每噸減少a(0<a<6)元,這時(shí)怎樣調(diào)運(yùn)才能使總運(yùn)費(fèi)最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù) 的圖象與正比例函數(shù) 的圖象相交于(1,),兩點(diǎn),點(diǎn)在第四象限,∥ 軸,.
(1)求的值及點(diǎn)的坐標(biāo);
(2)求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,的半徑為2,圓心在坐標(biāo)原點(diǎn),正方形的邊長為2,點(diǎn)、在第二象限,點(diǎn)、在上,且點(diǎn)的坐標(biāo)為(0,2).現(xiàn)將正方形繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)150°,點(diǎn)運(yùn)動(dòng)到了上點(diǎn)處,點(diǎn)、分別運(yùn)動(dòng)到了點(diǎn)、處,即得到正方形(點(diǎn)與重合);再將正方形繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)150°,點(diǎn)運(yùn)動(dòng)到了上點(diǎn)處,點(diǎn)、分別運(yùn)動(dòng)到了點(diǎn)、處,即得到正方形(點(diǎn)與重合),……,按上述方法旋轉(zhuǎn)2020次后,點(diǎn)的坐標(biāo)為( )
A.(0,2)B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△P1OA1,△P2A1A2,△P3A2A3……都是等腰Rt△,直角頂點(diǎn)P1(3,3),P2,P3……,均在直線y=﹣x+4上,設(shè)△P1OA1,△P2A1A2,△P3A2A3……的面積分別為S1,S2,S3……則S2019的值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,C,D為⊙O上的點(diǎn)且∠ABC=∠DBC,過C作CE⊥BD交BD的延長線于點(diǎn)E.
(1)求證:CE是⊙O的切線.
(2)若F是OB的中點(diǎn),FG⊥OB交CE于點(diǎn)G,FG=,tan∠ABC=,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=6,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒 個(gè)單位長度的速度沿線段AD運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)D出發(fā),以每秒2個(gè)單位長度的速度沿折線段D﹣O﹣C運(yùn)動(dòng),已知P、Q同時(shí)開始移動(dòng),當(dāng)動(dòng)點(diǎn)P到達(dá)D點(diǎn)時(shí),P、Q同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)t=1秒時(shí),求動(dòng)點(diǎn)P、Q之間的距離;
(2)若動(dòng)點(diǎn)P、Q之間的距離為4個(gè)單位長度,求t的值;
(3)若線段PQ的中點(diǎn)為M,在整個(gè)運(yùn)動(dòng)過程中;直接寫出點(diǎn)M運(yùn)動(dòng)路徑的長度為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,分別以正方形的三邊為直徑在正方形內(nèi)部作半圓,則陰影部分的面積之和是( 。
A.8B.4C.16πD.4π
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com