【題目】2019年11月20日,“美麗玉環(huán),文旦飄香”號(hào)冠名列車正式發(fā)車,為廣大旅客帶去“中國(guó)文旦之鄉(xiāng)”的獨(dú)特味道.根據(jù)市場(chǎng)調(diào)查,在文旦上市銷售的30天中,其銷售價(jià)格(元公斤)與第天之間滿足函數(shù)(其中為正整數(shù));銷售量(公斤)與第天之間的函數(shù)關(guān)系如圖所示,如果文旦上市期間每天的其他費(fèi)用為100元.
(1)求銷售量與第天之間的函數(shù)關(guān)系式;
(2)求在文旦上市銷售的30天中,每天的銷售利潤(rùn)與第天之間的函數(shù)關(guān)系式;(日銷售利潤(rùn)=日銷售額-日維護(hù)費(fèi))
(3)求日銷售利潤(rùn)的最大值及相應(yīng)的的值.
【答案】(1);(2);(3)1101.2,11.
【解析】
分兩段,根據(jù)題意,用待定系數(shù)法求解即可;
先用含m,n的式子表示出y來,再代入即可;
分別對(duì)(2)中的函數(shù)化為頂點(diǎn)式,再依次求出各種情況下的最大值,最后值最大的即為所求.
(1)當(dāng)時(shí),設(shè),由圖知可知
,解得∴
同理得,當(dāng)時(shí),
∴銷售量與第天之間的函數(shù)關(guān)系式:
(2)∵
∴
整理得,
(3)當(dāng)時(shí),
∵的對(duì)稱軸
∴此時(shí),在對(duì)稱軸的右側(cè)隨的增大而增大
∴時(shí),取最大值,則
當(dāng)時(shí)
∵的對(duì)稱軸是
∴在時(shí),取得最大值,此時(shí)
當(dāng)時(shí)
∵的對(duì)稱軸為
∴此時(shí),在對(duì)稱軸的左側(cè)隨的增大而減小
∴時(shí),取最大值,的最大值是
綜上,文旦銷售第11天時(shí),日銷售利潤(rùn)最大,最大值是1101.2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在Rt△ABC中,∠ACB=90°,∠A=30°,點(diǎn)O為AB中點(diǎn),點(diǎn)P為直線BC上的動(dòng)點(diǎn)(不與B、C重合),連接OC、OP,將OP繞點(diǎn)P順時(shí)針旋轉(zhuǎn)60°,得到線段PQ,連接BQ,若∠BPO=15°,BP=4,則BQ的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中 過點(diǎn)A作AE⊥DC,垂足為E,連接BE,F(xiàn)為BE上一點(diǎn),且∠AFE=∠D.
(1)求證:△ABF∽△BEC;
(2)若AD=5,AB=8,sinD=,求AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了節(jié)約資源,科學(xué)指導(dǎo)居民改善居住條件,小王向房管部門提出了一個(gè)購(gòu)買商品房的政策性方案.
根據(jù)這個(gè)購(gòu)房方案:
(1)若某三口之家欲購(gòu)買120平方米的商品房,求其應(yīng)繳納的房款;
(2)設(shè)該家庭購(gòu)買商品房的人均面積為平方米,繳納房款y萬(wàn)元,請(qǐng)求出關(guān)于x的函數(shù)關(guān)系式;
(3)若該家庭購(gòu)買商品房的人均面積為50平方米,繳納房款為y萬(wàn)元,且 57<y≤60 時(shí),求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過原點(diǎn)的直線與反比例函數(shù)()的圖象交于,兩點(diǎn),點(diǎn)在第一象限.點(diǎn)在軸正半軸上,連結(jié)交反比例函數(shù)圖象于點(diǎn).為的平分線,過點(diǎn)作的垂線,垂足為,連結(jié).若是線段中點(diǎn),的面積為4,則的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知AB為⊙O的直徑,CD是弦,且AB⊥CD于點(diǎn)E,連接AC、OC、BC
(1)求證:∠ACO=∠BCD;
(2)若EB=8cm,CD=24cm,求⊙O的面積.(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于兩點(diǎn).
(1)試確定上述反比例函數(shù)和一次函數(shù)的表達(dá)式;
(2)求的面積.
(3)根據(jù)圖象寫出反比例函數(shù)y≥n的x取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弧ED=弧BD,連接ED、BD,延長(zhǎng)AE交BD的延長(zhǎng)線于點(diǎn)M,過點(diǎn)D作⊙O的切線交AB的延長(zhǎng)線于點(diǎn)C.
(1)若OACD,求陰影部分的面積;
(2)求證:DEDM.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】例:利用函數(shù)圖象求方程x2﹣2x﹣2=0的實(shí)數(shù)根(結(jié)果保留小數(shù)點(diǎn)后一位).
解:畫出函數(shù)y=x2﹣2x﹣2的圖象,它與x軸的公共點(diǎn)的橫坐標(biāo)大約是﹣0.7,2.7.所以方程x2﹣2x﹣2=0的實(shí)數(shù)根為x1≈﹣0.7,x2≈2.7.我們還可以通過不斷縮小根所在的范圍估計(jì)一元二次方程的根.……這種求根的近似值的方法也適用于更高次的一元方程.
根據(jù)你對(duì)上面教材內(nèi)容的閱讀與理解,解決下列問題:
(1)利用函數(shù)圖象確定不等式x2﹣4x+3<0的解集是 ;利用函數(shù)圖象確定方程x2﹣4x+3=的解是 .
(2)為討論關(guān)于x的方程|x2﹣4x+3|=m解的情況,我們可利用函數(shù)y=|x2﹣4x+3|的圖象進(jìn)行研究.
①請(qǐng)?jiān)诰W(wǎng)格內(nèi)畫出函數(shù)y=|x2﹣4x+3|的圖象;
②若關(guān)于x的方程|x2﹣4x+3|=m有四個(gè)不相等的實(shí)數(shù)解,則m的取值范圍為 ;
③若關(guān)于x的方程|x2﹣4x+3|=m有四個(gè)不相等的實(shí)數(shù)解x1,x2,x3,x4(x1<x2<x3<x4),滿足x4﹣x3=x3﹣x2=x2﹣x1,求m的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com