【題目】如圖,,以為圓心,2為半徑作⊙交軸于兩點(diǎn),射線交⊙于兩點(diǎn),為弧的中點(diǎn),為的中點(diǎn).當(dāng)射線繞點(diǎn)旋轉(zhuǎn)時(shí),的最小值為( )
A.B.C.D.不能確定
【答案】C
【解析】
連接MD,如圖,利用垂徑定理得到MD⊥EF,則∠ODM=90,再根據(jù)勾股定理得到點(diǎn)D在以A點(diǎn)為圓心,2為半徑的圓上,利用點(diǎn)與圓的位置關(guān)系可判斷當(dāng)D點(diǎn)為CA與⊙A的交點(diǎn)時(shí),CD的值最小,此時(shí)CD=AC2=.
∵,以為圓心,2為半徑作⊙交軸于兩點(diǎn),
連接AC,MC
∴OA=2,AM=2=CM=R
∵為弧的中點(diǎn),AB為直徑
∴∠AMC=90
AC=
連接MD,如圖,
∵D為EF的中點(diǎn),
∴MD⊥EF,
∴∠ODM=90,
∴點(diǎn)D在以A點(diǎn)為圓心,2為半徑的圓上,
當(dāng)D點(diǎn)為CA與⊙A的交點(diǎn)時(shí),CD的值最小,此時(shí)CD=AC2=
即CD的最小值為.
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在矩形ABCD中,AB=1,在線段BC上取一點(diǎn)E,連接AE、ED,將△ABE沿AE翻折,使點(diǎn)B落在B'處,線段EB'交AD于點(diǎn)F.將△ECD沿DE翻折,使點(diǎn)C的對(duì)應(yīng)點(diǎn)C'落在線段EB'上,且點(diǎn)C'恰好為EB'的中點(diǎn),則線段EF的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)的圖象與軸交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn),且,頂點(diǎn)為.
(1)求二次函數(shù)的解析式;
(2)點(diǎn)為線段上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)作軸的垂線,垂足為,若,四邊形的面積為,求關(guān)于的函數(shù)解析式,并寫(xiě)出的取值范圍;
(3)探索:線段上是否存在點(diǎn),使為等腰三角形?如果存在,求出點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)呀理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知甲乙兩車分別從A、B兩地出發(fā),相向勻速行駛,已知乙車先出發(fā),1小時(shí)后甲車再出發(fā).一段時(shí)間后,甲乙兩車在休息站C地相遇:到達(dá)C地后,乙車不休息繼續(xù)按原速前往A地,甲車休息半小時(shí)后再按原速前往B地,甲車到達(dá)B地停止運(yùn)動(dòng);乙車到A地后立刻原速返回B地,已知兩車間的距離y(km)隨乙車運(yùn)動(dòng)的時(shí)間x(h)變化如圖,則當(dāng)甲車到達(dá)B地時(shí),乙車距離B地的距離為_____(km).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】重慶不僅是網(wǎng)紅城市,更是擁有長(zhǎng)安,力帆等大型車企的一座汽車城,為了更好的推廣和銷售汽車,每年都會(huì)在悅來(lái)會(huì)展中心舉辦大型車展.去年該車展期間大眾旗下兩品牌汽車邁騰和途觀L共計(jì)銷售240輛,邁騰銷售均價(jià)為每輛20萬(wàn)元,途觀L銷售均價(jià)為每輛30萬(wàn)元,兩種車型去年車展期間銷售額共計(jì)5600萬(wàn)元.
(1)這兩種車型在去年車展期間各銷售了多少輛?
(2)在今年的該車展上,各大汽車經(jīng)銷商紛紛采取降價(jià)促銷手段,而途觀L堅(jiān)持不降價(jià),與去年相比,銷售均價(jià)不變,銷量比去年車展期間減少了a%,而邁騰銷售均價(jià)比去年降低了a%,銷量較去年增加了2a%,兩種車型今年車展期間銷售總額與去年相同,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,,(),以為直徑畫(huà)圓⊙,點(diǎn)為⊙上一動(dòng)點(diǎn).
(1)判斷坐標(biāo)原點(diǎn)是否在⊙上,并說(shuō)明理由;
(2)若點(diǎn)在第一象限,過(guò)點(diǎn)作軸,垂足為,連接,且,當(dāng)時(shí),求線段的長(zhǎng):
(3)若點(diǎn)是的中點(diǎn),試問(wèn)隨著的變化點(diǎn)的坐標(biāo)是否發(fā)生變化,若不變,求出點(diǎn)的坐標(biāo);若變化,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一次函數(shù)與反比例函數(shù)的圖象交于點(diǎn)A(-4,-1)和B(a,2).
(1)求反比例函數(shù)的解析式和點(diǎn)B的坐標(biāo).
(2)根據(jù)圖象回答,當(dāng)x在什么范圍內(nèi)時(shí),一次函數(shù)的值大于反比例函數(shù)的值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠ABC=60°,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得△ADE,點(diǎn)C的對(duì)應(yīng)點(diǎn)E恰好落在AB上.
(1)求∠DBC的度數(shù);
(2)當(dāng)BD時(shí),求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,⊙O的半徑OC垂直于弦AB,垂足為點(diǎn)D,點(diǎn)P在OC的延長(zhǎng)線上,連結(jié)AP,AC平分∠PAB.
(1)求證:PA是⊙O的切線;
(2)若sinP=,AB=16,求⊙O的半徑長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com