已知:如圖,PA切⊙O于A點,PO交⊙O于B點.PA=15cm,PB=9cm.求⊙O的半徑長.

【答案】分析:連接OA,由切線的性質可證△AOP為直角三角形,再利用勾股定理求半徑OA.
解答:解:連接OA.
∵PA切⊙O于A點,
∴OA⊥AP,
在Rt△AOP中,設OA=OB=r,
則OA2+AP2=OP2,即r2+152=(r+9)2,
解得r=8,
即⊙O的半徑為8cm.
點評:本題考查了切線的性質,勾股定理的運用.關鍵是由切線的性質構造直角三角形,運用勾股定理列方程求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網已知,如圖,PA切⊙O于點A,割線PD交⊙O于點C、D,∠P=45°,弦AB⊥PD,垂足為E,且BE=2CE,DE=6,CF⊥PC,交DA的延長線于點F.求tan∠CFE的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網已知:如圖,PA切⊙O于點A,割線PBC交⊙O于點B、C,PD⊥AB于點D,PD、AO的延長線相交于點E,連接CE并延長CE交⊙O于點F,連接AF.
(1)求證:△PBD∽△PEC;
(2)若AB=12,tan∠EAF=
23
,求⊙O半徑的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知,如圖,PA切⊙O于A,△ABC為⊙O的內接三角形,CA∥EP,AB、CB的延長線分別交DP精英家教網于點D、E.
(1)求證:DE•DP=DA•DB.
(2)若AB=4,AC=6,DB=3,求DP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,PA切⊙O于A點,PO∥AC,BC是⊙O的直徑.請問:直線PB是否與⊙O相切?說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,PA切⊙O于A點,PO交⊙O于B點.PA=15cm,PB=9cm.求⊙O的半徑長.

查看答案和解析>>

同步練習冊答案