如圖,AB為⊙O的直徑,AB=4,點C在⊙O上,CF⊥OC,且CF=BF.
小題1:證明BF是⊙O的切線;
小題2:設AC與BF的延長線交于點M,若MC=6,求∠MCF的大小.

小題1:見解析。
小題2:30°
證明:連接OF.
(1) ∵ CF⊥OC,
∴ ∠FCO=90°.
∵ OC=OB,
∴ ∠BCO=∠CBO.
∵ FC=FB,
∴ ∠FCB=∠FBC.                                       
∴ ∠BCO+∠FCB =∠CBO+∠FBC.
即 ∠FBO=∠FCO=90°.
∴ OB⊥BF.
∵ OB是⊙O的半徑,
∴ BF是⊙O的切線.
(2)∵ ∠FBO=∠FCO=90°,
∴ ∠MCF+∠ACO =90°,∠M+∠A =90°.
∵ OA=OC,
∴ ∠ACO=∠A.
∴ ∠FCM=∠M.                                     
易證△ACB∽△ABM,
.
∵ AB=4,MC=6,
∴ AC=2.   
∴ AM=8,BM==.
∴cos∠MC F =cosM ==.
∴ ∠MCF=30°.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,以O為圓心的兩個同心圓中,半徑分別為3和5,若大圓的弦AB與小圓相交,則弦AB的長的取值范圍是(  )
A.8≤AB≤10B.8<AB<10
C.8<AB≤10D.6≤AB≤10

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,的直徑,弦于點連結的周長等于

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,AB為⊙O的直徑,P為AB延長線上一點,PD切⊙O于C,BC和AD的延長線相交于點E,且AB=AE。 (1)求證: (2)若圓的半徑為1,△ABE是等邊三角形,求BP的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

一個圓錐的側面展開圖是半徑為1的半圓,則該圓錐的底面半徑是( ▲ ).
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,⊙O是△ABC的外接圓,∠OBC=20°,則∠A=  °.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點O,過點O作EF∥BC交AB于E,交AC于F,過點O作OD⊥AC于D.下列四個結論中正確的結論有(    )個
①EF是△ABC的中位線.
②以E為圓心、BE為半徑的圓與以F為圓心、CF為半徑的圓外切;
③設OD=m,AE+AF=2n,則SAEF=mn;
;

(A)1個       (B)2個      (C)3個     (D)4個

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

在校運動會上,三位同學用繩子將四根同樣大小的接力棒分別按橫截面如圖(1)、(2)、(3)所示的方式進行捆綁,三個圖中的四個圓心的連線(虛線)分別構成菱形、正方形、菱形,如果把三種方式所用繩子的長度分別用來表示,則
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知圓錐的底面半徑為5cm,母線長為9cm,則它的側面積為  ▲ ;

查看答案和解析>>

同步練習冊答案