【題目】如圖,點O是△ABC內一點,連結OB、OC,并將AB、OB、OC、AC的中點D、E、F、G依次連結,得到四邊形DEFG.
(1)求證:四邊形DEFG是平行四邊形;
(2)若M為EF的中點,OM=3,∠OBC和∠OCB互余,求DG的長度.
【答案】(1)證明見解析;(2)6.
【解析】
試題分析:(1)根據三角形的中位線平行于第三邊并且等于第三邊的一半可得EF∥BC且EF=BC,DG∥BC且DG=BC,從而得到DE=EF,DG∥EF,再利用一組對邊平行且相等的四邊形是平行四邊形證明即可;
(2)先判斷出∠BOC=90°,再利用直角三角形斜邊的中線等于斜邊的一半,求出EF即可.
試題解析:(1)∵D、G分別是AB、AC的中點,∴DG∥BC,DG=BC,∵E、F分別是OB、OC的中點,∴EF∥BC,EF=BC,∴DE=EF,DG∥EF,∴四邊形DEFG是平行四邊形;
(2)∵∠OBC和∠OCB互余,∴∠OBC+∠OCB=90°,∴∠BOC=90°,∵M為EF的中點,OM=3,∴EF=2OM=6.
由(1)有四邊形DEFG是平行四邊形,∴DG=EF=6.
科目:初中數(shù)學 來源: 題型:
【題目】如圖是函數(shù) 與函數(shù) 在第一象限內的圖象,點P是 的圖象上一動點,PA⊥x軸于點A , 交 的圖象于點C, PB⊥y軸于點B , 交 的圖象于點D.
(1)求證:D是BP的中點;
(2)求出四邊形ODPC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知點E,F(xiàn),G,H分別是四邊形ABCD各邊AB,BC,CD,DA的中點,根據以下思路可以證明四邊形EFGH是平行四邊形:
(1)如圖2,將圖1中的點C移動至與點E重合的位置,F(xiàn),G,H仍是BC,CD,DA的中點,求證:四邊形CFGH是平行四邊形;
(2)如圖3,在邊長為1的小正方形組成的5×5網格中,點A,C,B都在格點上,在格點上畫出點D,使點C與BC,CD,DA的中點F,G,H組成正方形CFGH;
(3)在(2)條件下求出正方形CFGH的邊長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對x,y定義了一種新運算T,規(guī)定T(x,y)= (其中a,b均為非零常數(shù)),這里等式右邊是通常的四則運算,例如:T(0,1)= ,已知T(1,﹣1)=﹣2,T(4,2)=1.
(1)求a,b的值;
(2)若關于m的不等式組 恰好有3個整數(shù)解,求p的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某國發(fā)生8.1級強烈地震,我國積極組織搶險隊赴地震災區(qū)參與搶險工作,如圖,某探測對在地面A、B兩處均探測出建筑物下方C處由生命跡象,已知探測線與地面的夾角分別是25°和60°,且AB=4米,求該生命跡象所在位置C的深度.(結果精確到1米,參考數(shù)據:sin25°≈0.4,cos25°≈0,9,tan25°≈0.5,≈1.7)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線y=﹣x+4與兩坐標軸分別相交于點A,B兩點,點C是線段AB上任意一點,過C分別作CD⊥x軸于點D,CE⊥y軸于點E.雙曲線 與CD,CE分別交于點P,Q兩點,若四邊形ODCE為正方形,且 ,則k的值是( )
A.4
B.2
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某車隊要把4000噸貨物運到雅安地震災區(qū)(方案定后,每天的運量不變)。
(1)從運輸開始,每天運輸?shù)呢浳飮崝?shù)n(單位:噸)與運輸時間t(單位:天)之間有怎樣的函數(shù)關系式?
(2)因地震,到災區(qū)的道路受阻,實際每天比原計劃少運20%,則推遲1天完成任務,求原計劃完成任務的天數(shù).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com