【題目】將二次函數(shù)y=x2的圖象向右平移2個單位,得到的圖象所對應(yīng)的函數(shù)解析式是______

【答案】y=x-22

【解析】

根據(jù)已知求得向右平移2個單位后的圖象的頂點坐標(biāo)為(20),所以,所得圖象的解析式為y=x-22

解:將二次函數(shù)y=x2的圖象向右平移2個單位,后的圖象的頂點坐標(biāo)為(2,0),得到的圖象所對應(yīng)的函數(shù)解析式是:y=x-22

故答案是:y=x-22

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a是最大的負(fù)整數(shù),b是多項式2m2n﹣m3n2﹣m﹣2的次數(shù),c是單項式﹣2xy2的系數(shù),且a、b、c分別是點A、B、C在數(shù)軸上對應(yīng)的數(shù).
(1)求a、b、c的值,并在數(shù)軸上標(biāo)出點A、B、C.

(2)若動點P、Q同時從A、B出發(fā)沿數(shù)軸負(fù)方向運動,點P的速度是每秒 個單位長度,點Q的速度是每秒2個單位長度,求運動幾秒后,點Q可以追上點P?
(3)在數(shù)軸上找一點M,使點M到A、B、C三點的距離之和等于10,請直接寫出所有點M對應(yīng)的數(shù).(不必說明理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:
(1)
(2)(2x﹣y)(2x+y)+2y2
(3)(x+1)2﹣(x﹣1)(x+2)
(4)(54x2y﹣108xy2﹣36xy)÷18xy.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國是世界上嚴(yán)重缺水的國家之一為了增強(qiáng)居民的節(jié)水意識某市自來水公司對居民用水采用以戶為單位分段計費的辦法收費即一個月用水10噸以內(nèi)包括10噸的用戶,每噸收水費a元;一個月用水超過10噸的用戶10噸水仍按每噸a元收費,超過10噸的部分,按每噸b元b>a收費設(shè)一戶居民月用水x噸,應(yīng)收水費y元,y與x之間的函數(shù)關(guān)系如圖

1求a的值,某戶居民上月用水8噸,應(yīng)收水費多少元;

2求b的值并寫出當(dāng)x>10時,y與x之間的函數(shù)關(guān)系式;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】九(3)班2016年新年聯(lián)歡會中,有一個摸獎游戲,規(guī)則如下:有4張紙牌,背面都是喜羊羊頭像,正面有2張笑臉、2張哭臉.現(xiàn)將4張紙牌洗勻后背面朝上擺放到桌上,然后讓同學(xué)去翻紙牌.

(1)現(xiàn)小芳有一次翻牌機(jī)會,若正面是笑臉的就獲獎,正面是哭臉的不獲獎.她從中隨機(jī)翻開一張紙牌,則小芳獲獎的概率是

(2)如果小芳、小明都有翻兩張牌的機(jī)會.小芳先翻一張,放回洗勻后再翻一張;小明同時翻開兩張紙牌.他們各自翻開的兩張紙牌中只要出現(xiàn)笑臉就獲獎.他們獲獎的機(jī)會相等嗎?分析說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著信息技術(shù)的快速發(fā)展,互聯(lián)網(wǎng)+滲透到我們?nèi)粘I畹母鱾領(lǐng)域,網(wǎng)上在線學(xué)習(xí)交流已不再是夢,現(xiàn)有某教學(xué)網(wǎng)站策劃了A,B兩種上網(wǎng)學(xué)習(xí)的月收費方式:

收費方式

月使用費/元

包時上網(wǎng)時間/h

超時費/(元/min)

A

7

25

0.01

B

m

n

0.01

設(shè)每月上網(wǎng)學(xué)習(xí)時間為x小時,方案A,B的收費金額分別為yA,yB

(1)如圖是yB與x之間函數(shù)關(guān)系的圖象,請根據(jù)圖象填空:m= ;n=

(2)寫出yA與x之間的函數(shù)關(guān)系式.

(3)選擇哪種方式上網(wǎng)學(xué)習(xí)合算,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一元二次方程x2﹣1=0的根為( )
A.x=1
B.x=﹣1
C.x1=1,x2=﹣1
D.x1=0,x2=1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點E在DF上,點B在AC上,∠1=∠2,∠C=∠D,試說明:AC∥DF,將過程補(bǔ)充完整. 解:∵∠1=∠2(已知)
∠1=∠3(
∴∠2=∠3(等量代換)
∴EC∥DB(
∴∠C=∠ABD(
又∵∠C=∠D(已知)
∴∠D=∠ABD(
∴AC∥DF(

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠α=25°34′20″,則∠α的余角度數(shù)是______________

查看答案和解析>>

同步練習(xí)冊答案