【題目】已知:如圖,E、F是平行四邊形ABCD的對(duì)角線BD上的兩點(diǎn),BEDF

求證:(1ADF≌△CBE

2CEAF

【答案】(1)見解析;(2)見解析.

【解析】

1)根據(jù)平行四邊形的性質(zhì)得到AD=BC,ADBC,由平行線的性質(zhì)得到∠ADF=CBE,利用SAS證明即可;

2)根據(jù)全等三角形的性質(zhì)得到∠AFD=CEB,根據(jù)等角的補(bǔ)角相等得到∠AFB=CED,根據(jù)平行線的判定定理證明CEAF

1)∵四邊形ABCD是平行四邊形,∴AD=BC,ADBC,∴∠ADF=CBE

在△ADF和△CBE中,∵AD=BC,∠ADF=CBE,BE=DF,∴△ADF≌△CBE

2)∵△ADF≌△CBE,∴∠AFD=CEB,∴∠AFB=CED,∴CEAF

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】濟(jì)南某中學(xué)在參加“創(chuàng)文明城,點(diǎn)贊泉城”書畫比賽中,楊老師從全校30個(gè)班中隨機(jī)抽取了4個(gè)班(用A,B,C,D表示),對(duì)征集到的作鼎的數(shù)量進(jìn)行了分析統(tǒng)計(jì),制作了兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)根據(jù)以上信息,回答下列問(wèn)題:

(l)楊老師采用的調(diào)查方式是   (填“普查”或“抽樣調(diào)查”);

(2)請(qǐng)補(bǔ)充完整條形統(tǒng)計(jì)圖,并計(jì)算扇形統(tǒng)計(jì)圖中C班作品數(shù)量所對(duì)應(yīng)的圓心角度數(shù)   

(3)請(qǐng)估計(jì)全校共征集作品的什數(shù).

(4)如果全枝征集的作品中有5件獲得一等獎(jiǎng),其中有3名作者是男生,2名作者是女生,現(xiàn)要在獲得一樣等獎(jiǎng)的作者中選取兩人參加表彰座談會(huì),請(qǐng)你用列表或樹狀圖的方法,求恰好選取的兩名學(xué)生性別相同的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線yx2+bx+c經(jīng)過(guò)點(diǎn)A、B、C,已知A(﹣1,0),C0,﹣3).

1)求拋物線的解析式;

2)如圖1,拋物線頂點(diǎn)為E,EFx軸于F點(diǎn),Mm,0)是x軸上一動(dòng)點(diǎn),N是線段EF上一點(diǎn),若∠MNC90°,請(qǐng)指出實(shí)數(shù)m的變化范圍,并說(shuō)明理由.

3)如圖2,將拋物線平移,使其頂點(diǎn)E與原點(diǎn)O重合,直線ykx+2k0)與拋物線相交于點(diǎn)P、Q(點(diǎn)P在左邊),過(guò)點(diǎn)Px軸平行線交拋物線于點(diǎn)H,當(dāng)k發(fā)生改變時(shí),請(qǐng)說(shuō)明直線QH過(guò)定點(diǎn),并求定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知等邊ABC,以AB為直徑的圓與BC邊交于點(diǎn)D,過(guò)點(diǎn)DDFAC,垂足為F,過(guò)點(diǎn)FFGAB,垂足為G,連結(jié)GD

1)求證:DF是⊙O的切線;

2)若AB12,求FG的長(zhǎng);

3)在(2)問(wèn)條件下,求點(diǎn)DFG的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖①,②是曉東同學(xué)在進(jìn)行居民樓高度、樓間距對(duì)住戶采光影響問(wèn)題的研究時(shí)畫的兩個(gè)示意圖.請(qǐng)你閱讀相關(guān)文字,解答下面的問(wèn)題.

1)圖①是太陽(yáng)光線與地面所成角度的示意圖.冬至日正午時(shí)刻,太陽(yáng)光線直射在南回歸線(南緯23.5B地上.在地處北緯36.5A地,太陽(yáng)光線與地面水平線l所成的角為,試借助圖①,求的度數(shù).

2)圖②是乙樓高度、樓間距對(duì)甲樓采光影響的示意圖.甲樓地處A地,其二層住戶的南面窗戶下沿距地面3.4.現(xiàn)要在甲樓正南面建一幢高度為22.3米的乙樓,為不影響甲樓二層住戶(一層為車庫(kù))的采光,兩樓之間的距離至少應(yīng)為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把一張長(zhǎng)方形卡片ABCD放在每格寬度為12mm的橫格紙中,恰好四個(gè)頂點(diǎn)都在橫格線上.已知α=36°,求長(zhǎng)方形卡片的周長(zhǎng).

(精確到1mm,參考數(shù)據(jù):sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一張矩形紙片ABCD,,

如圖1,點(diǎn)E在這張矩形紙片的邊AD上,將紙片折疊,使AB落在CE所在直線上,折痕設(shè)為點(diǎn)MN分別在邊AD,BC,利用直尺和圓規(guī)畫出折痕不寫作法,保留作圖痕跡;

如圖2,點(diǎn)K在這張矩形紙片的邊AD上,,將紙片折疊,使AB落在CK所在直線上,折痕為HI,點(diǎn)AB分別落在點(diǎn),處,小明認(rèn)為所在直線恰好經(jīng)過(guò)點(diǎn)D,他的判斷是否正確,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2020年?yáng)|京奧運(yùn)會(huì)的比賽門票開始接受公眾預(yù)訂.下表為奧運(yùn)會(huì)官方票務(wù)網(wǎng)站公布的幾種球類比賽的門票的人民幣價(jià)格,球迷小李用12000元做為預(yù)訂下表中比賽項(xiàng)目門票的資金.

比賽項(xiàng)目

票價(jià)(元/場(chǎng))

男籃

1000

足球

800

乒乓球

500

(1)若全部資金用來(lái)預(yù)訂男籃門票和乒乓球門票共15張,問(wèn)男籃門票和乒乓球門票各訂多少?gòu)?/span>?

(2)若在準(zhǔn)備資金允許的范圍內(nèi)和總票數(shù)不變的前提下,這個(gè)球迷想預(yù)定上表中三種球類門票,其中足球門票與乒乓球門票數(shù)相同,且足球門票的費(fèi)用不超過(guò)男籃門票的費(fèi)用,問(wèn)可以預(yù)訂這三種球類門票各多少?gòu)垼?/span>

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校圍繞著你最喜歡的體育活動(dòng)項(xiàng)目是什么?(只寫一項(xiàng))的問(wèn)題,對(duì)在校學(xué)生進(jìn)行了隨機(jī)抽樣調(diào)查,從而得到一組數(shù)據(jù),如圖1是根據(jù)這組數(shù)據(jù)繪制的條形統(tǒng)計(jì)圖,請(qǐng)結(jié)合統(tǒng)計(jì)圖回答下列問(wèn)題:

(1)該校對(duì)多少名學(xué)生進(jìn)行了抽樣調(diào)查?

(2)本次抽樣調(diào)查中,最喜歡足球活動(dòng)的有多少人?占被調(diào)查人數(shù)的百分比是多少?

(3)若該校九年級(jí)共有400名學(xué)生,圖2是根據(jù)各年級(jí)學(xué)生人數(shù)占全校學(xué)生總?cè)藬?shù)的百分比繪制的扇形統(tǒng)計(jì)圖,請(qǐng)你估計(jì)全校學(xué)生中最喜歡籃球活動(dòng)的人數(shù)約為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案