【題目】如圖,在中,,,點在線段上運動(不與,重合),連接,,交線段于.
(1)當時,______,______,點從向運動時,逐漸變______(填“大”或“小”);
(2)當等于多少時,與全等?請說明理由.
【答案】(1),,;(2).
【解析】
(1)根據(jù)三角形內(nèi)角和定理,將已知數(shù)值代入即可求出∠BAD;根據(jù)平角求出∠EDC的度數(shù),根據(jù)AB=AC可得∠C的度數(shù),根據(jù)三角形內(nèi)角和定理即可求出∠DEC;根據(jù)點D的運動方向可判定∠BDA的變化情況.
(2)當DC=2時,利用∠DEC+∠EDC=140°,∠ADB+∠EDC=140°,求出∠ADB=∠DEC,再利用AB=DC=2,即可得出△ABD≌△DCE.
解:(1)∠BAD=180°-∠ABD-∠BDA=180°-40°-115°=25°;
∵AB=AC,
∴∠C=∠B=40°
∵∠EDC=180°-∠ADE-∠BDA=180°-40°-115°=25°,
∴∠DEC=180°-∠EDC -∠C=180°-25°-40°=115°;
從圖中可以得知,點D從B向C運動時,∠BDA逐漸變小;
故答案為:,,小;
(2)當時,.理由如下:
∵,
∴,
∴.
又∵,
∴,
∴,
又∵,
∴.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,點D是BC的中點,作射線AD,在線段AD及其延長線上分別取點E,F,連結CE,BF.添加一個條件,使得△BDF≌△CDE,你添加的條件是_____________________(不添加輔助線).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平行四邊形ABCD中,E是BC上任意一點,延長AE交DC的延長線與點F.
(1)在圖中當CE=CF時,求證:AF是∠BAD的平分線.
(2)在(1)的條件下,若∠ABC=90°,G是EF的中點(如圖),請求出∠BDG的度數(shù).
(3)如圖,在(1)的條件下,若∠BAD=60°,且FG∥CE,FG=CE,連接DB、DG,求出∠BDG的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,CD為⊙O的直徑,弦AB交CD于點E,連接BD、OB.
(1)求證:△AEC∽△DEB;
(2)若CD⊥AB,AB=8,DE=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠ AOB=90°,且點A,B分別在反比例函數(shù)(x<0),(x>0)的圖象上,且k1,k2分別是方程x2-x-6=0的兩根.
(1)求k1,k2的值;
(2)連接AB,求tan∠ OBA的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,過等邊三角形ABC邊AB上一點D作DE∥BC交邊AC于點E,分別取BC,DE的中點M,N,連接MN.
(1)發(fā)現(xiàn):在圖1中,,說明理由;
(2)探索:如圖2,將△ADE繞點A旋轉(zhuǎn),請求出的值;
(3)拓展:如圖3,△ABC和△ADE是等腰三角形,且∠BAC=∠DAE,M,N分別是底邊BC,DF的中點,若BD⊥CE,請直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校八年級學生小陽,小杰和小凡到某超市參加了社會實踐活動,在活動中他們參與了某種水果的銷售工作,已知該水果的進價為10元/千克,下面是他們在活動結束后的對話.
小陽:如果以12元/千克的價格銷售,那么每天可售出300千克.
小杰:如果以15元/千克的價格銷售,那么每天可獲取利潤750元.
小凡:我通過調(diào)查驗證發(fā)現(xiàn)每天的銷售量y(千克)與銷售單價x(元)之間存在一次函數(shù)關系.
(1)求y(千克)與x(元)(x>0)的函數(shù)關系式;
(2)當銷售單價為何值時,該超市銷售這種水果每天獲得的利潤達600元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線與軸交于,兩點,交軸于點.
求拋物線的解析式;
點是第二象限內(nèi)一點,過點作軸交拋物線于點,過點作軸于點,連接、,若.求的值并直接寫出的取值范圍(利用圖完成你的探究).
如圖,點是線段上一動點(不包括點、),軸交拋物線于點,,交直線于點,設點的橫坐標為,求的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】課間,小聰拿著老師的等腰直角三角板玩,不小心掉到兩墻之間(如圖),,,從三角板的刻度可知,小聰很快就知道了砌墻磚塊的厚度的平方(每塊磚的厚度相等)為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com