【題目】如圖,在中,,點在線段上運動(不與重合),連接,交線段.

1)當時,______,______,點運動時,逐漸變______(填“大”或“小”);

2)當等于多少時,全等?請說明理由.

【答案】1,,;(2.

【解析】

1)根據(jù)三角形內(nèi)角和定理,將已知數(shù)值代入即可求出∠BAD;根據(jù)平角求出∠EDC的度數(shù),根據(jù)AB=AC可得∠C的度數(shù),根據(jù)三角形內(nèi)角和定理即可求出∠DEC;根據(jù)點D的運動方向可判定∠BDA的變化情況.
2)當DC=2時,利用∠DEC+EDC=140°,∠ADB+EDC=140°,求出∠ADB=DEC,再利用AB=DC=2,即可得出ABD≌△DCE

解:(1)∠BAD=180°-ABD-BDA=180°-40°-115°=25°;
AB=AC,

∴∠C=B=40°

∵∠EDC=180°-ADE-BDA=180°-40°-115°=25°,

∴∠DEC=180°-EDC -C=180°-25°-40°=115°;

從圖中可以得知,點DBC運動時,∠BDA逐漸變小;
故答案為:,小;

2)當時,.理由如下:

,

.

又∵,

,

又∵

.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,點DBC的中點,作射線AD,在線段AD及其延長線上分別取點E,F,連結CE,BF.添加一個條件,使得△BDF≌△CDE,你添加的條件是_____________________(不添加輔助線).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平行四邊形ABCD中,EBC上任意一點,延長AEDC的延長線與點F.

(1)在圖中當CE=CF時,求證:AF∠BAD的平分線.

(2)在(1)的條件下,若∠ABC=90°,GEF的中點(如圖),請求出∠BDG的度數(shù).

(3)如圖,在(1)的條件下,若∠BAD=60°,FG∥CE,FG=CE,連接DBDG,求出∠BDG的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,CD為⊙O的直徑ABCD于點E,連接BDOB

(1)求證:△AEC∽△DEB;

(2)CDAB,AB=8,DE=2,求⊙O的半徑

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠ AOB90°,且點A,B分別在反比例函數(shù)x0),x0)的圖象上,且k1,k2分別是方程x2x60的兩根.

1)求k1k2的值;

2)連接AB,求tan OBA的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,過等邊三角形ABCAB上一點DDE∥BC交邊AC于點E,分別取BC,DE的中點M,N,連接MN.

(1)發(fā)現(xiàn):在圖1中,,說明理由;

(2)探索:如圖2,將△ADE繞點A旋轉(zhuǎn),請求出的值;

(3)拓展:如圖3,△ABC△ADE是等腰三角形,且∠BAC=∠DAE,M,N分別是底邊BC,DF的中點,若BD⊥CE,請直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校八年級學生小陽,小杰和小凡到某超市參加了社會實踐活動,在活動中他們參與了某種水果的銷售工作,已知該水果的進價為10/千克,下面是他們在活動結束后的對話.

小陽:如果以12/千克的價格銷售,那么每天可售出300千克.

小杰:如果以15/千克的價格銷售,那么每天可獲取利潤750元.

小凡:我通過調(diào)查驗證發(fā)現(xiàn)每天的銷售量y(千克)與銷售單價x(元)之間存在一次函數(shù)關系.

(1)求y(千克)與x(元)(x>0)的函數(shù)關系式;

(2)當銷售單價為何值時,該超市銷售這種水果每天獲得的利潤達600元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線軸交于,兩點,交軸于點

求拋物線的解析式;

是第二象限內(nèi)一點,過點軸交拋物線于點,過點軸于點,連接、,若.求的值并直接寫出的取值范圍(利用圖完成你的探究).

如圖,點是線段上一動點(不包括點),軸交拋物線于點,交直線于點,設點的橫坐標為,求的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】課間,小聰拿著老師的等腰直角三角板玩,不小心掉到兩墻之間(如圖),,,從三角板的刻度可知,小聰很快就知道了砌墻磚塊的厚度的平方(每塊磚的厚度相等)為________

查看答案和解析>>

同步練習冊答案