【題目】如圖,已知∠MON30°,點A1A2,A3在射線ON上,點B1B2,B3,在射線OM上,△A1B1A2,△A2B2A3,△A3B3A4,均為等邊三角形,若OA11,則△A8B8A9的邊長_________

【答案】128

【解析】

根據(jù)等腰三角形的性質(zhì)以及平行線的性質(zhì)得出A1B1A2B2A3B3,以及A2B22B1A2,得出A3B34B1A24,A4B48B1A28,A5B516B1A2進(jìn)而得到A8B8=128.

∵△A1B1A2是等邊三角形,

A1B1=A2B1,

∵∠MON=30°,

OA1=A1B1=1

A2B1=1,

∵△A2B2A3、△A3B3A4是等邊三角形,

A1B1A2B2A3B3,B1A2B2A3

A2B2=2B1A2,B3A3=2B2A3

A3B3=4B1A2=4,A4B4=8B1A2=8A5B5=16B1A2=16,

以此類推,A8B8==128.

∴△A8B8A9的邊長為128.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知函數(shù)y=x與反比例函數(shù)y= (x>0)的圖象交于點A.y=x的圖象向下移6個單位后與雙曲線y=交于點B,x軸交于點C.

(1)求點C的坐標(biāo);

(2)=2,求反比例函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,已知于點DAE平分

(1)試探究的關(guān)系;

(2)若FAE上一動點,當(dāng)F移動到AE之間的位置時,,如圖2所示,此時的關(guān)系如何?

(3)若FAE上一動點,當(dāng)F繼續(xù)移動到AE的延長線上時,如圖3,,①中的結(jié)論是否還成立?如果成立請說明理由,如果不成立,寫出新的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AD,AE分別是△ABC的高和角平分線,

1)若∠ABC=30°,∠ACB=50°,求∠DAE的度數(shù)

2)寫出∠DAE與∠C-B的數(shù)量關(guān)系,并證明你的結(jié)論

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC和△AOD是等腰直角三角形,AB=ACAO=AD,∠BAC=∠OAD=90°,點O是△ABC內(nèi)的一點,BOC=130°.

(1)求證:OB=DC;

(2)求DCO的大小;

(3)設(shè)AOB=α,那么當(dāng)α為多少度時,△COD是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某人在大樓30米高(PH=30)的窗口P處進(jìn)行觀測,測得山坡上A處的俯角為15°,山腳B處的俯角為60°,已知該山坡的坡度i1,P,H,B,C,A在同一個平面上,H,B,C在同一條直線上,PHHC.A,B兩點間的距離是(  )

A. 15 B. 20 C. 20 D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀一段文字,再回答下列問題:

已知在平面內(nèi)兩點坐標(biāo)P1(x1,y1)P2(x2,y2),其兩點間距離公式為 ,同時,當(dāng)兩點所在的直線在坐標(biāo)軸上或平行于x軸或垂直于x軸距離公式可簡化成|x2-x1||y2-y1|

(1)已知A(35)B(-2,-1),試求AB兩點的距離;

(2)已知AB在平行于y軸的直線上,點A的縱坐標(biāo)為5,點B的縱坐標(biāo)為-1,試求A,B兩點的距離.

(3)已知一個三角形各頂點坐標(biāo)為A(0,6),B(-3,2)C(3,2),你能斷定此三角形的形狀嗎?說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DEABEDFACF,若BDCDBECF,則下列結(jié)論:①DEDF;②AD平分∠BAC;③AEAD;④ACAB2BE中正確的是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知O為坐標(biāo)原點,長方形ABCD(點A與坐標(biāo)原點重合)的頂點D、B分別在x軸、y軸上,且點C的坐標(biāo)為(-48),連接BD,將ABD沿直線BD翻折至ABD,交CD于點E

1)求SBED的面積;

2)求點A坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案