【題目】如圖,在平面直角坐標(biāo)系中,矩形AOCB的兩邊OA、OC分別在x軸和y軸上,且OA=1,OC= ,在第二象限內(nèi),以原點(diǎn)O為位似中心將矩形AOCB放大為原來的 倍,得到矩形A1OC1B1 , 再以原點(diǎn)O為位似中心將矩形A1OC1B1放大為原來的 倍,得到矩形A2OC2B2…,以此類推,得到的矩形A100OC100B100的對角線交點(diǎn)的縱坐標(biāo)為

【答案】
【解析】解:∵OA=1,OC= , ∴點(diǎn)B的坐標(biāo)為(﹣1, ),
∴矩形AOCB的對角線交點(diǎn)的坐標(biāo)為(﹣ , ),
則矩形A1OC1B1的對角線交點(diǎn)的縱坐標(biāo)為 × = = ,
則矩形A100OC100B100的對角線交點(diǎn)的縱坐標(biāo)為
故答案為:
根據(jù)題意確定點(diǎn)B的坐標(biāo),根據(jù)矩形的性質(zhì)求出矩形AOCB的對角線交點(diǎn)的坐標(biāo),根據(jù)位似變換的性質(zhì)求出矩形A1OC1B1的對角線交點(diǎn)的縱坐標(biāo),根據(jù)規(guī)律解答.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,圓M經(jīng)過原點(diǎn)O,直線y=﹣ x﹣6與x軸、y軸分別相交于A,B兩點(diǎn).

(1)求出A,B兩點(diǎn)的坐標(biāo);
(2)若有一拋物線的對稱軸平行于y軸且經(jīng)過點(diǎn)M,頂點(diǎn)C在圓M上,開口向下,且經(jīng)過點(diǎn)B,求此拋物線的函數(shù)解析式;
(3)設(shè)(2)中的拋物線交x軸于D、E兩點(diǎn),在拋物線上是否存在點(diǎn)P,使得
SPDE= SABC?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,AB=AC,D為BC的中點(diǎn),以D為頂點(diǎn)作∠MDN=∠B.
(1)如圖(1)當(dāng)射線DN經(jīng)過點(diǎn)A時,DM交AC邊于點(diǎn)E,不添加輔助線,寫出圖中所有與△ADE相似的三角形.

(2)如圖(2),將∠MDN繞點(diǎn)D沿逆時針方向旋轉(zhuǎn),DM,DN分別交線段AC,AB于E,F(xiàn)點(diǎn)(點(diǎn)E與點(diǎn)A不重合),不添加輔助線,寫出圖中所有的相似三角形,并證明你的結(jié)論.

(3)在圖(2)中,若AB=AC=10,BC=12,當(dāng)SDEF= SABC時,求線段EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(1,0),P是第一象限內(nèi)任意一點(diǎn),連接PO,PA,若∠POA=m°,∠PAO=n°,則我們把(m°,n°)叫做點(diǎn)P 的“雙角坐標(biāo)”.例如,點(diǎn)(1,1)的“雙角坐標(biāo)”為(45°,90°).
(1)點(diǎn)( , )的“雙角坐標(biāo)”為;
(2)若點(diǎn)P到x軸的距離為 ,則m+n的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與x軸的一個交點(diǎn)坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:①b2﹣4ac<0;②方程ax2+bx+c=0的兩個根是x1=﹣1,x2=3;③2a+b=0;④當(dāng)y>0時,x的取值范圍是﹣1<x<3;⑤當(dāng)x>0時,y隨x增大而減小.其中結(jié)論正確的個數(shù)是(
A.4個
B.3個
C.2個
D.1個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣2經(jīng)過點(diǎn)A(1,0)和點(diǎn)B(4,0),與y軸交于點(diǎn)C.
附:閱讀材料
法國弗朗索瓦韋達(dá)最早發(fā)現(xiàn)一元二次方程中根與系數(shù)的關(guān)系為:兩根之和等于一次項(xiàng)系數(shù)與二次項(xiàng)系數(shù)之比的相反數(shù),兩根之積等于常數(shù)項(xiàng)羽二次項(xiàng)系數(shù)之比,人們稱之為韋達(dá)定理.
即:設(shè)一元二次方程ax2+bx+c=0的兩根為x1、x2 , 則:x1+x2=﹣ ,x1x2= 能靈活運(yùn)用韋達(dá)定理,有時可以使解題更為簡單.

(1)求拋物線的解析式;
(2)以點(diǎn)A為圓心,作于直線BC相切的⊙A,求⊙A的面積;
(3)將直線BC向下平移n個單位后與拋物線交于點(diǎn)M、N,且線段MN=2CB,求直線MN的解析式及平移距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了解學(xué)生對新聞、體育、動畫、娛樂、戲曲五類電視節(jié)目最喜愛的情況,隨機(jī)調(diào)查了若干名學(xué)生,根據(jù)調(diào)查數(shù)據(jù)進(jìn)行整理,繪制了如下的不完整統(tǒng)計圖.
請你根據(jù)以上的信息,回答下列問題:
(1)本次共調(diào)查了名學(xué)生,其中最喜愛戲曲的有人;在扇形統(tǒng)計圖中,最喜愛體育的對應(yīng)扇形的圓心角大小是
(2)根據(jù)以上統(tǒng)計分析,估計該校2000名學(xué)生中最喜愛新聞的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為3cm,動點(diǎn)M從點(diǎn)B出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運(yùn)動,到達(dá)點(diǎn)A停止運(yùn)動,另一動點(diǎn)N同時從點(diǎn)B出發(fā),以1cm/s的速度沿著邊BA向點(diǎn)A運(yùn)動,到達(dá)點(diǎn)A停止運(yùn)動,設(shè)點(diǎn)M運(yùn)動時間為x(s),△AMN的面積為y(cm2),則y關(guān)于x的函數(shù)圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖為放置在水平桌面上的臺燈的平面示意圖,燈臂AO長為40cm,與水平面所形成的夾角∠OAM為75°.由光源O射出的邊緣光線OC,OB與水平面所形成的夾角∠OCA,∠OBA分別為90°和30°,求該臺燈照亮水平面的寬度BC(不考慮其他因素,結(jié)果精確到0.1cm.溫馨提示:sin75°≈0.97,cos75°≈0.26, ).

查看答案和解析>>

同步練習(xí)冊答案