精英家教網 > 初中數學 > 題目詳情

【題目】如圖,正方形ABCD與矩形EFGH在直線l的同側,邊AD,EH在直線l上,且AD=5cm,EH=4cmEF=3cm.保持正方形ABCD不動,將矩形EFGH沿直線l左右移動,連接BF,CG,則BF+CG的最小值為_____________cm

【答案】

【解析】

作點C關于FG的對稱點P,連接GP,以FG,PG為鄰邊作平行四邊形PGFQ,則BF+CG=BF+QF,當B,FQ三點共線時,BF+CG的最小值為BQ的長,過點QQNABN,依據勾股定理即可得到RtBNQ中,BQ=,即可得出BF+CG的最小值為

如圖所示,作點C關于FG的對稱點P,連接GP,

FG,PG為鄰邊作平行四邊形PGFQ,則FQ=PG=CG,FG=QP=4

BF+CG=BF+QF,

∴當B,FQ三點共線時,BF+CG的最小值為BQ的長,

過點QQNABN

由題可得BN=25-3=4,NQ=5-4=1,

RtBNQ中,BQ=,

BF+CG的最小值為

故答案為:

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】小高從家門口騎車去離家4千米的單位上班,先花3分鐘走平路1千米,再走上坡路以0.2千米/分鐘的速度走了5分鐘,最后走下坡路花了4分鐘到達工作單位,若設他從家開始去單位的時間為t(分鐘),離家的路程為y(千米),則yt8<t≤12)的函數關系為( )

A. y=0.5t8<t≤12B. y=0.5t+28<t≤12

C. y=0.5t+88<t≤12D. y="0." 5t-28<t≤12

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某學校為了開展陽光體育運動,計劃購買籃球與足球共,已知每個籃球的價格為元,每個足球的價格為

(1)若購買這兩類球的總金額為元,求籃球和足球各購買了多少個?

(2)元旦期間,商家給出藍球打九折,足球打八五折的優(yōu)惠價,若購買這種籃球與足球各個,那么購買這兩類球一共需要多少錢?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某學校欲招聘一名新教師,對甲、乙、丙三名應試者進行了面試、筆試和才藝三個方面的量化考核,他們的各項得分(百分制)如下表所示:

應試者

面試成績

筆試成績

才藝

83

79

90

85

80

75

80

90

73

1)根據三項得分的平均分,從高到低確定應聘者的排名順序;

2)學校規(guī)定:筆試、面試、才藝得分分別不得低于80分、80分、70分,并按照60%、30%、10%的比例計入個人總分,請你說明誰會被錄用?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】列方程(組)及不等式(組)解應用題:

水是生命之源.為了鼓勵市民節(jié)約用水,江夏區(qū)水務部門實行居民用水階梯式計量水價政策;若居民每戶每月用水量不超過10立方米,每立方米按現行居民生活用水水價收費(現行居民生活用水水價=基本水價+污水處理費);若每戶每月用水量超過10立方米,則超過部分每立方米在基本水價基礎上加價100%,但每立方米污水處理費不變.

下面表格是某居民小區(qū)4月份甲、乙兩戶居民生活用水量及繳納生活用水水費的情況統(tǒng)計:

4月份居民用水情況統(tǒng)計表

(注:污水處理的立方數=實際生活用水的立方數)

用水量(立方米)

繳納生活用水費用(元)

甲用戶

8

27.6

乙用戶

12

46.3

1)求每立方米的基本水價和每立方米的污水處理費各是多少?

2)設這個小區(qū)某居民用戶5月份用水立方米,需要繳納的生活用水水費為.若他5月份生活用水水費計劃不超過64元,該用戶5月份最多可用水多少立方米?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,□OABC的邊OCy軸的正半軸上,OC3,A(2,1),反比例函數y (x0)的圖象經過點B

1)求點B的坐標和反比例函數的關系式;

2)如圖2,將線段OA延長交y (x0)的圖象于點D,過BD的直線分別交x軸、y軸于EF兩點,①求直線BD的解析式;②求線段ED的長度

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC的三個頂點和它內部的點P1,把ABC分成3個互不重疊的小三角形;ABC的三個頂點和它內部的點P1、P2,把ABC分成5個互不重疊的小三角形;ABC的三個頂點和它內部的點 P1、P2、P3,把ABC分成7個互不重疊的小三角形;…ABC的三個頂點和它內部的點 P1、P2、P3、…、P2017,把ABC分成_____個互不重疊的小三角形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,ABC內接于O,BAC的平分線交O于點D,交BC于點E(BEEC),且BD=2.過點D作DFBC,交AB的延長線于點F.

(1)求證:DF為O的切線;

(2)若BAC=60°,DE=,求圖中陰影部分的面積;

(3)若,DF+BF=8,如圖2,求BF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某區(qū)對即將參加中考的4 000名初中畢業(yè)生進行了一次視力抽樣調查,繪制出頻數分布表和不完整的頻數分布直方圖.請根據圖表信息回答下列問題:

(1)本次調查樣本容量為  ;

(2)在頻數分布表中,a   ,b   ,并將頻數分布直方圖補充完整;

(3)若視力在4.9以上(含4.9)均屬標準視力,根據上述信息估計全區(qū)初中畢業(yè)生中達到標準視力的學生約有多少人?

查看答案和解析>>

同步練習冊答案