【題目】如圖所示,O的內(nèi)接ABC中,BAC=45°,ABC=15°,ADOC并交BC的延長(zhǎng)線(xiàn)于D點(diǎn),OC交AB于E點(diǎn).

(1)求D的度數(shù);

(2)求證:AC2=ADCE.

【答案】(1)45°;(2)證明參見(jiàn)解析.

【解析】

試題分析:(1)連接OA,由圓周角ABC與圓心角AOC所對(duì)的弧為同一條弧,根據(jù)同弧所對(duì)的圓心角等于所對(duì)圓周角的2倍,由ABC的度數(shù)求出AOC的度數(shù),再由OA=OC,根據(jù)等邊對(duì)等角,由頂角AOC的度數(shù),利用三角形的內(nèi)角和定理求出底角ACO的度數(shù),再由BAC及ABC的度數(shù),求出ACB的度數(shù),由ACB﹣∠ACO求出BCE的度數(shù),由OC與AD平行,根據(jù)兩直線(xiàn)平行同位角相等可得D=BCE,可得出D的度數(shù);(2)由ACB的度數(shù),利用鄰補(bǔ)角定義求出ACD的度數(shù),再由AEC為三角形BEC的外角,利用外角性質(zhì)得到AEC=ABC+BCE,可得出AEC的度數(shù),進(jìn)而得到AEC=ACD,在三角形ACD中,由ACD及D的度數(shù),求出CAD的度數(shù),可得CAD=ACE,利用兩對(duì)對(duì)應(yīng)角相等的三角形相似可得三角形AEC與三角形DCA相似,根據(jù)相似三角形的對(duì)應(yīng)邊成比例可得證.

試題解析:(1)連接OA,如圖所示:

圓周角ABC與圓心角AOC所對(duì)的弧都為弧AC,∴∠AOC=2ABC,又ABC=15°,∴∠AOC=30°,又OA=OC,∴∠OAC=OCA==75°,又BAC=45°,ABC=15°∴∠ACB=120°,∴∠OCB=ACB﹣∠ACO=120°﹣75°=45°,又OCAD,∴∠D=OCB=45°;(2)∵∠ABC=15°,OCB=45°,∴∠AEC=60°,又ACB=120°∴∠ACD=60°,∴∠AEC=ACD=60°,∵∠D=45°ACD=60°,∴∠CAD=75°,又OCA=75°,∴∠CAD=OCA=75°,∴△ACE∽△DAC,=,即AC2=ADCE.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一架長(zhǎng)2.5米的梯子AB如圖所示斜靠在一面墻上,這時(shí)梯足B離墻底CC=90°)的距離BC0.7米.

(1)求此時(shí)梯頂A距地面的高度AC;

(2)如果梯頂A下滑0.9米,那么梯足B在水平方向,向右滑動(dòng)了多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線(xiàn)y=3(x﹣2)2+5的頂點(diǎn)坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若不等式組 ,的整數(shù)解是關(guān)于x的方程2x-4=ax的根,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形,在建立平面直角坐標(biāo)系后,ABC的頂點(diǎn)均在格點(diǎn)上,

寫(xiě)出A、B、C的坐標(biāo).

以原點(diǎn)O為對(duì)稱(chēng)中心,畫(huà)出ABC關(guān)于原點(diǎn)O對(duì)稱(chēng)的A1B1C1,并寫(xiě)出A1、B1、C1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一次函數(shù)y=3x﹣1的圖象沿y軸向上平移3個(gè)單位后,得到的圖象對(duì)應(yīng)的函數(shù)關(guān)系式為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠A=100°,沿BD對(duì)折恰使點(diǎn)A落在BC邊上的E點(diǎn),EC上有一點(diǎn)F,且DF=CF,(1)求證:DF=AD,(2) 猜想:BCBD+AD的關(guān)系,并說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,C=90,AB=10cm,ACBC=43,點(diǎn)P從點(diǎn)A出發(fā)沿AB方向向點(diǎn)B運(yùn)動(dòng),速度為1cm/s,同時(shí)點(diǎn)Q從點(diǎn)B出發(fā)沿BCA方向向點(diǎn)A運(yùn)動(dòng),速度為2cm/s,當(dāng)一個(gè)運(yùn)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)運(yùn)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).

(1)設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為x(秒),PBQ的面積為y(cm2),當(dāng)PBQ存在時(shí),求y與x的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;

(2)當(dāng)x=5秒時(shí),在直線(xiàn)PQ上是否存在一點(diǎn)M,使BCM得周長(zhǎng)最小,若存在,求出最小周長(zhǎng),若不存在,請(qǐng)說(shuō)明理由.

(3)當(dāng)點(diǎn)Q在BC邊上運(yùn)動(dòng)時(shí),是否存在x,使得以PBQ的一個(gè)頂點(diǎn)為圓心作圓時(shí),另外兩個(gè)頂點(diǎn)均在這個(gè)圓上,若存在,求出 x的值;不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知拋物線(xiàn)y=x2x3與x軸交于A和B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸相交于點(diǎn)C,頂點(diǎn)為D

(1)求出點(diǎn)A,B,D的坐標(biāo);

(2)如圖1,若線(xiàn)段OB在x軸上移動(dòng),且點(diǎn)O,B移動(dòng)后的對(duì)應(yīng)點(diǎn)為O,B.首尾順次連接點(diǎn)O、B、D、C構(gòu)成四邊形OBDC,請(qǐng)求出四邊形OBDC的周長(zhǎng)最小值.

(3)如圖2,若點(diǎn)M是拋物線(xiàn)上一點(diǎn),點(diǎn)N在y軸上,連接CM、MN.當(dāng)CMN是以MN為直角邊的等腰直角三角形時(shí),直接寫(xiě)出點(diǎn)N的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案