【題目】已知拋物線y=(m﹣1)x2+(m﹣2)x﹣1與x軸相交于A、B兩點,且AB=2,求m的值.

【答案】解:設點A(α,0),點B的坐標為(β,0)
則一元二次方程(m﹣1)x2+(m﹣2)x﹣1=0的兩根為α、β,

∴α+β=﹣ ,αβ=﹣ ,

∴|α﹣β|= =2,

∴(α+β)2﹣4αβ=4,

即(﹣ 2+ =4,

解得m=2或m=


【解析】抓住已知點A、B是拋物線與x軸的兩交點坐標,設點A(α,0),點B的坐標為(β,0),可知一元二次方程(m﹣1)x2+(m﹣2)x﹣1=0的兩根為α、β,再利用根與系數(shù)的關系求出α+β和αβ的值,再根據(jù)AB=|α﹣β|=2,列出關于m的方程求解即可。
【考點精析】利用根與系數(shù)的關系和二次函數(shù)圖象以及系數(shù)a、b、c的關系對題目進行判斷即可得到答案,需要熟知一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a、b、c而定;兩根之和等于方程的一次項系數(shù)除以二次項系數(shù)所得的商的相反數(shù);兩根之積等于常數(shù)項除以二次項系數(shù)所得的商;二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時,拋物線開口向上; a<0時,拋物線開口向下b與對稱軸有關:對稱軸為x=-b/2a;c表示拋物線與y軸的交點坐標:(0,c).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學課上,王老師布置如下任務:如圖,△ABC中,BC>AB>AC,在BC邊上取一點P,使∠APC=2∠ABC.

小路的作法如下:

① 作AB邊的垂直平分線,交BC于點P,交AB于點Q;

② 連結AP.

請你根據(jù)小路同學的作圖方法,利用直尺和圓規(guī)完成作圖(保留作圖痕跡);并完成以下推理,注明其中蘊含的數(shù)學依據(jù):

∵ PQ是AB的垂直平分線

∴ AP= , (依據(jù): );

∴ ∠ABC= , (依據(jù): ).

∴ ∠APC=2∠ABC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某書店老板去圖書批發(fā)市場購買某種圖書.第一次用1200元購書若干本,并按該書定價7元出售,很快售完.由于該書暢銷,第二次購書時,每本書的批發(fā)價已比第一次提高了20%,他用1500元所購該書數(shù)量比第一次多10本.當按定價7元售出150本時,出現(xiàn)滯銷,便以定價的5折售完剩余的書.

(1)每本書第一次的批發(fā)價是多少錢?

(2)試問該老板這兩次售書總體上是賠錢了,還是賺錢了(不考慮其它因素)?若賠錢,賠多少?若賺錢,賺多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】□ABCD如圖放置,若點B的坐標是(-3,4),點C的坐標是(-1,0),點D的坐標是(5,3),則點A的坐標是______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,AEBDCFBD,EF分別為垂足.

1)求證:四邊形AECF是平行四邊形;

2)如果AE=3,EF=4,求AF、EC所在直線的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,∠C=90°,

(1)a=4,b=3,則c=_______;

(2)a=24,c=30,則b=_______;

(3)BC=11,AB=61,則AC=_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,AB是⊙O的直徑,弦 ,∠B=60°,OD⊥AC,垂足為D.

(1)求OD的長;
(2)求劣弧AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,在ABC中,∠A=90°,AB=AC,點DBC的中點.

(1)如圖①,若點E、F分別為AB、AC上的點,且DEDF,求證:BE=AF;

(2)若點E、F分別為AB、CA延長線上的點,且DEDF,那么BE=AF嗎?請利用圖②說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標中,點的坐標為,點的坐標為,將線段向右平移個單位長度得到線段(點和點分別是點和點的對應點),連接、,點是線段的中點.

備用圖

1)求點的坐標;

2)若長方形以每秒個單位長度的速度向正下方運動,(點、、、分別是點、、、、的對應點),當軸重合時停止運動,連接、,設運動時間為妙,請用含的式子表示三角形的面積(不要求寫出的取值范圍);

3)在(2)的條件下,連接、,問是否存在某一時刻,使三角形的面積等于三角形的面積?若存在,請求出值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案