【題目】為了解居民用水情況,小明在某小區(qū)隨機(jī)抽查了20戶家庭的月用水量,結(jié)果如下表:

月用水量(m3

4

5

6

8

9

戶數(shù)

4

5

7

3

1

則關(guān)于這20戶家庭的月用水量,下列說法錯(cuò)誤的是( 。

A.中位數(shù)是6mB.平均數(shù)是5.8m

C.眾數(shù)是6mD.極差是6m

【答案】D

【解析】

根據(jù)中位數(shù),平均數(shù),眾數(shù),極差的概念,逐一判斷選項(xiàng),即可得到答案.

A、把這20戶的用水量從小到大排列,最中間的數(shù)是第10、11個(gè)數(shù),則中位數(shù)是:(6+6÷2=6m3),故本選項(xiàng)正確;

B、平均數(shù)是:(4×4+5×5+6×7+8×3+9×1÷20=5.8m3,故本選項(xiàng)正確;

C、6出現(xiàn)了7次,出現(xiàn)的次數(shù)最多,則眾數(shù)是6m3,故本選項(xiàng)正確;

D、極差是:9-4=5m3,故本選項(xiàng)錯(cuò)誤;

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD內(nèi)接于圓,對(duì)角線ACBD相交于點(diǎn)E,FAC上,AB=AD,BFC=BAD=2DFC

(1)若∠DFC=40,求∠CBF的度數(shù).

(2)求證: CDDF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,點(diǎn)P位于等邊△ABC的內(nèi)部,且∠ACP=∠CBP

(1)延長BP至點(diǎn)D,使得PD=PC,連接AD,CD

依題意,補(bǔ)全圖形;

證明:AD+CD=BD;

(2)(1)的條件下,若BD的長為2,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在下列(邊長為1)的網(wǎng)格中,已知的三個(gè)頂點(diǎn),在格點(diǎn)上,請(qǐng)分別按不同要求在網(wǎng)格中描出一個(gè)格點(diǎn),并寫出點(diǎn)的坐標(biāo).

1)將繞點(diǎn)順時(shí)針旋轉(zhuǎn),畫出旋轉(zhuǎn)后所得的三角形,點(diǎn)旋轉(zhuǎn)后落點(diǎn)為.

2)經(jīng)過,三點(diǎn)有一條拋物線,請(qǐng)找到點(diǎn),使點(diǎn)也落在這條拋物線上.

3)經(jīng)過,三點(diǎn)有一個(gè)圓,請(qǐng)找到一個(gè)橫坐標(biāo)為2的點(diǎn),使點(diǎn)也落在這個(gè)圓上.

1)點(diǎn)的坐標(biāo)為( ,

2)點(diǎn)的坐標(biāo)為( )/span>

3)點(diǎn)的坐標(biāo)為( ,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 為了解今年師大附中多元校區(qū)共3000名八年級(jí)學(xué)生地理知識(shí)大賽的筆試情況,隨機(jī)抽取了部分參賽同學(xué)的成績,整理并制作如圖所示的圖表(部分未完成).請(qǐng)你根據(jù)表中提供的信息,解答下列問題:

分?jǐn)?shù)段

頻數(shù)

頻率

60≤x70

30

0.1

70≤x80

90

n

80≤x90

m

0.4

90≤x≤100

60

0.2

1)此次調(diào)查的樣本容量為______m=______;n=______

2)補(bǔ)全頻數(shù)分布直方圖;

3)如果比賽成績80分以上為優(yōu)秀,那么你估計(jì)師大附中多元校區(qū)八年級(jí)學(xué)生筆試成績的優(yōu)秀人數(shù)大約是______名.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形ABOC的頂點(diǎn)O在坐標(biāo)原點(diǎn),邊BOx軸的負(fù)半軸上,AC長為,若將邊AC平移至A'C'處,此時(shí)A'坐標(biāo)為(-4,2),分別連接A'BC'O,反比例函數(shù)y=的圖象與四邊形A'BOC'對(duì)角線A'O交于D點(diǎn),連接BD,則當(dāng)BD取得最小值時(shí),k的值是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,以x=1為對(duì)稱軸的拋物線y=ax2+bx+c的圖象與x軸交于點(diǎn)A-10),點(diǎn)B,與y軸交于點(diǎn)C0,-3),作直線BC.點(diǎn)P是拋物線的對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),P點(diǎn)到x軸和直線BC的距離分別為PD、PE

1)求拋物線解析式;

2)當(dāng)P點(diǎn)運(yùn)動(dòng)過程中滿足PE=PD時(shí),求此時(shí)點(diǎn)P的坐標(biāo);

3)如圖2,從點(diǎn)B處沿著直線BC的垂線翻折PE得到FE',當(dāng)點(diǎn)F在拋物線上時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系xOy中,拋物線y=-x-a)(x-4)(a0)與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn).

1)若D點(diǎn)坐標(biāo)為(),求拋物線的解析式和點(diǎn)C的坐標(biāo);

2)若點(diǎn)M為拋物線對(duì)稱軸上一點(diǎn),且點(diǎn)M的縱坐標(biāo)為a,點(diǎn)N為拋物線在x軸上方一點(diǎn),若以CB、M、N為頂點(diǎn)的四邊形為平行四邊形時(shí),求a的值;

3)直線y=2x+b與(1)中的拋物線交于點(diǎn)D、E(如圖2),將(1)中的拋物線沿著該直線方向進(jìn)行平移,平移后拋物線的頂點(diǎn)為D′,與直線的另一個(gè)交點(diǎn)為E′,與x軸的交點(diǎn)為B′,在平移的過程中,求D′E′的長度;當(dāng)∠E′D′B′=90°時(shí),求點(diǎn)B′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】結(jié)合書香成都全民閱讀活動(dòng),金堂在全縣中小學(xué)推廣普及中華經(jīng)典誦讀,讓孩子掌握國學(xué)經(jīng)典作品讀、誦、吟等基本方法,培養(yǎng)中華經(jīng)典誦讀活動(dòng)的愛好者、傳播者,營造濃郁的文化氛圍.20189月某初中學(xué)校開展了國學(xué)金典誦讀活動(dòng),林老師對(duì)各年級(jí)同學(xué)的獲獎(jiǎng)情況進(jìn)行了統(tǒng)計(jì),并繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中相關(guān)數(shù)據(jù)解答下列問題:

1)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)全;

2)獲得一等獎(jiǎng)的同學(xué)中有1名來自七年級(jí),有2名來自八年級(jí),其他同學(xué)均來自九年級(jí),現(xiàn)準(zhǔn)備從獲得一等獎(jiǎng)的同學(xué)中任選兩人參加縣級(jí)國學(xué)經(jīng)典誦讀大賽,請(qǐng)用列表或畫樹狀圖的方法求所選出的兩人中既有七年級(jí)又有八年級(jí)同學(xué)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案