【題目】已知:如圖△ABC內(nèi)接于⊙O,OH⊥AC于H,過A點(diǎn)的切線與OC的延長線交于點(diǎn)D,∠B=30°,OH=5.請(qǐng)求出:
(1)∠AOC的度數(shù);
(2)△OAC的面積;
(3)線段AD的長(結(jié)果保留根號(hào)).
【答案】(1)∠AOC=60°;(2);(3)AD=.
【解析】
(1)根據(jù)圓周角定理可得答案;
(2)證明△OAC是等邊三角形,可知∠AOH=30°,解直角三角形求出AH即可解決問題;
(3)由切線的性質(zhì)可得AD⊥OA,然后根據(jù)正切的概念求得AD的長.
解:(1)∵∠B=30°,
∴∠AOC=2∠B=60°;
(2)在△AOC中,∵OA=OC,∠AOC=60°,
∴△OAC是等邊三角形,
∵OH⊥AC,
∴∠AOH=30°,
∵,
∴AH=OH·tan30°=,
∴AC=2AH=10,
∴;
(3)∵AD是切線,
∴AD⊥OA,
∵△OAC是等邊三角形,∠AOC=60°,
∵tan60°=,OA=AC=10,
∴AD=OA·tan60°=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)的圖象分別位于第二、第四象限,、兩點(diǎn)在該圖象上,下列命題:①過點(diǎn)作軸,為垂足,連接.若的面積為3,則;②若,則;③若,則其中真命題個(gè)數(shù)是( )
A. 0B. 1C. 2D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表是某班體育考試跳繩項(xiàng)目模擬考試時(shí)10名同學(xué)的測試成績(單位:個(gè)/分鐘)
成績(個(gè)/分鐘) | 140 | 160 | 169 | 170 | 177 | 180 |
人數(shù) | 1 | 1 | 1 | 2 | 3 | 2 |
則關(guān)于這10名同學(xué)每分鐘跳繩的測試成績,下列說法錯(cuò)誤的是( )
A.方差是135B.平均數(shù)是170C.中位數(shù)是173.5D.眾數(shù)是177
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“禹州鈞瓷”名揚(yáng)天下,某網(wǎng)店專門銷售某種品牌的鈞瓷花瓶,成本為40元/件,每天銷量(件)與銷售單價(jià)(元)之間存在一次函數(shù)關(guān)系,如圖所示.
(1)求與之間的函數(shù)關(guān)系式.
(2)如果規(guī)定每天鈞瓷花瓶的銷售量不低于120件,當(dāng)銷售單價(jià)為多少元時(shí),每天獲取的利潤最大,最大利潤是多少元?
(3)該網(wǎng)店店主熱心公益事業(yè),決定從每天的銷售利潤中捐出100元給希望工程,為了保證捐款后每天剩余利潤不低于2000元,試確定該鈞瓷花瓶銷售單價(jià)的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=mx與反比例函數(shù)(x>0)的圖象交于Q點(diǎn),點(diǎn)B(3,4)在反比例函數(shù)的圖象上,過點(diǎn)B作PB∥x軸交OQ于點(diǎn)P,過點(diǎn)P作PA∥y軸交反比例函數(shù)圖象于點(diǎn)A.
(1)若點(diǎn)A的縱坐標(biāo)為,求反比例函數(shù)及直線OP的解析式;
(2)連接OB,在(1)的條件下,求sin∠BOP的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a>0)經(jīng)過點(diǎn)M(﹣1,2)和點(diǎn)N(1,﹣2),則下列說法錯(cuò)誤的是( )
A.a+c=0
B.無論a取何值,此二次函數(shù)圖象與x軸必有兩個(gè)交點(diǎn),且函數(shù)圖象截x軸所得的線段長度必大于2
C.當(dāng)函數(shù)在x<時(shí),y隨x的增大而減小
D.當(dāng)﹣1<m<n<0時(shí),m+n<
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,AB=AC,⊙O是△ABC的外接圓,過點(diǎn)C作∠BCD=∠ACB交⊙O于點(diǎn)D,連接AD交BC于點(diǎn)E,延長DC至點(diǎn)F,使CF=AC,連接AF.
(1)求證:ED=EC;
(2)求證:AF是⊙O的切線;
(3)如圖2,若點(diǎn)G是△ACD的內(nèi)心,BCBE=25,求BG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班為參加學(xué)校的大課間活動(dòng)比賽,準(zhǔn)備購進(jìn)一批跳繩,已知2根A型跳繩和1根B型跳繩共需56元,1根A型跳繩和2根B型跳繩共需82元.
(1)求一根A型跳繩和一根B型跳繩的售價(jià)各是多少元?
(2)學(xué)校準(zhǔn)備購買50根跳繩,如果A型跳繩的數(shù)量不多于B型跳繩數(shù)量的3倍,那么A型跳繩最多能買多少條?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com